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Abstract: Complex networks analysis (CNA) has attracted so much attention in the last few years.
An interesting task in CNA complex network analysis is community detection. In this paper,
we focus on Local Community Detection, which is the problem of detecting the community of
a given node of interest in the whole network. Moreover, we study the problem of finding local
communities of high density, known as α-quasi-cliques in graph theory (for high values of α in the
interval ]0,1[). Unfortunately, the higher α is, the smaller the communities become. This led to
the maximal α-quasi-clique community of a given node problem, which is, the problem of finding local
communities that are α-quasi-cliques of maximal size. This problem is NP-hard, then, to approach the
optimal solution, some heuristics exist. When α is high (>0.5) the diameter of a maximal α-quasi-clique
is at most 2. Based on this property, we propose an algorithm to calculate an upper bound to approach
the optimal solution. We evaluate our method in real networks and conclude that, in most cases, the
bound is very accurate. Furthermore, for a real small network, the optimal value is exactly achieved
in more than 80% of cases.

Keywords: local community detection; maximal α-quasi-clique problem; density; upper bound;
diameter

1. Introduction

Since the beginning of 2000s, the study of complex networks (network-based representations
of complex systems) has become an active area of research. Inspired largely by the empirical study
of real-world networks, such as computer networks, technological networks, brain networks, and
social networks. Researchers from biology to physics, from economics to mathematics, and from
computer science to sociology, are increasingly involved with the collection, modeling, and analysis of
network-indexed data.

Concretely, a network can be seen as a set of entities, called vertices or nodes, which are connected
by links, also called edges. Real-world complex networks often exhibit community structures (see [1]).
Roughly speaking, communities are subgroups of nodes in the network that are densely connected
within them, whereas sparsely connected with the rest of the network. Community detection is a tool
useful for analyzing the structure of the network, visualization, or prediction of various phenomena,
like the diffusion of information for social recommendation.

In some situations, the network can be so large that we do not have access to information
concerning the entire network. Furthermore, one can be only interested in the community of some
particular nodes in the network. The detection of the community of a given node of interest is called
local community detection problem. In contrast with most community detection algorithms that
decompose the entire network in groups. Moreover, detecting the local communities of specific nodes
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may be very important for applications dealing with huge networks, when iterating through all nodes
would be impractical.

There is not a unanimous definition of community, however, this latter is usually referred to as a
set of nodes densely connected, which implies strong relationships within the community. From this,
one can easily deduce that in the ideal case, a community is a complete clique (a set of nodes where
every two distinct nodes are connected to each other). However, the size of a clique is limited by the
degree of its nodes and for most real complex networks, the degree distribution follows a power law
(only a few nodes have many connections). As a result, the existing cliques can be very small or even
trivial, such as pair of nodes or triangles. This led to the relaxation of the concept of a complete clique
to an almost complete subgraph, also called quasi-clique. Hence, this article deals with the problem of
finding quasi-cliques of maximal size (this is a well-known problem in graph theory. The interested
reader can see [2–5]). More precisely, a quasi-clique is related to the concept of an α-quasi-clique (for a
given α, such that 0 < α < 1). An α-quasi-clique is a group of nodes where each member is connected
to more than a proportion α of the other nodes. This guarantees that the resulting communities will
have a density greater than α (if α = 1 we have a complete clique. In contrast, most commonly used
community detection methods do not ensure anything about the density of the resulting communities,
such as the Newman-Girvan modularity [6] due to its resolution limit [7].

For all of the reasons previously mentioned, we treat the problem of finding local communities
of type α-quasi-clique of maximal size and we call it "The maximal α-quasi-clique local community
problem". This problem is NP-complete (see [8,9]), then, some heuristics were proposed [10,11]).
Although heuristics allow to approach the optimal solution in a reasonable amount of time, they do
not guarantee optimality. Therefore, the main contribution of this paper is an upper bound for the
optimal solution. This latter can be useful to measure how close the obtained solution by an heuristic is
to the optimal one, thus, it is very useful to evaluate the performance of any heuristic. An upper bound
has already been proposed in [12]. In this paper, we propose an improved version taking into account
that for α > 0.5 the diameter of an α-quasi-clique is, at most, 2 (see [11]). This property implies mining
only the first and second neighborhood of the starting node which simplifies considerably the task in
terms of time and space. As we do not need to have any knowledge about the graph structure beyond
the second neighborhood. Furthermore, we have particular interest in detecting α-quasi-cliques for
high values of α. The calculation of the proposed bound has two parts: the calculation of a bound per
se for the starting node and its neighborhood as well as an improvement part. Another contribution of
this paper is a graphical solution or visualization of the calculation of the upper bound. This graphical
scheme allows to highlight that the main calculation of the bound can be reduced to a binary search
algorithm, which considerably reduces the execution time in comparison to the previous version
described in [12].

This paper is organized, as follows: Section 2 presents the main definitions and notations.
Next, we discuss the proposed upper bound in Section 3. Subsequently, Section 4 presents experimental
results with real networks as well as comparison with the existing version of the bound. Finally,
Section 5 draws some conclusions and perspectives.

2. Main Definitions and Notations

A graph G = (V, E), is defined by a set of vertices or nodes, denoted V, and a the set of edges
or links, denoted E, formed by pairs of vertices. To simplify, we only consider undirected graphs,
where the edges are not oriented. The neighborhood Γ(u) of a node u is the set of nodes v, such that
(u, v) ∈ E. The degree of a node u, denoted d(u), is the number of its neighbors, i.e., d(u) = |Γ(u)|.
Subsequently, the definition of an α-quasi-clique is given in Definition 1.
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Definition 1. α-quasi-clique
Given an undirected graph G(V, E) and a parameter α with 0 < α < 1, an α-quasi-clique is a subgraph

induced by a subset of the node set C ⊆ V if the following condition holds:

|Γ(n) ∩ C| > α(|C| − 1), ∀n ∈ C. (1)

where the symbols |S| denotes the cardinality of the set S.

Equation (1) implies that each node in the quasi-clique C must be connected to more than
a proportion α of the other nodes. Notice that for α = 1 an α-quasi-clique is a complete clique.
Subsequently, when α is high, the resulting communities are robust, contain strongly connected nodes
and have an edge-density greater than α (see [11] for the proof). Hereafter, the Equation (1) will be
referred to as the rule of an α-quasi-clique. This rule constitutes a lower bound on the minimal internal
connections of each node. In the scientific literature, one can find other definitions of the so-called
α-quasi-clique. The most common variant is a relaxation of Definition 1 as it just constraints the global
density of the quasi-clique to be at least α (see for instance [13–16]). Other variants much closer to
Definition 1 are considered by [17,18]. However, these latter allow for the equality in Equation (1),
which implies that a node might have as many connections as non-connections in the community. The
advantage of the Definition 1 is that for any α ≥ 0.5, it constrains at least the absolute majority in terms
of connections, thus, it guarantees that the resulting communities are robust and contain strongly
connected nodes).

2.1. The Maximal α−quasi-clique Local Community Problem

Given a specific node n0 in the network and α fixed, one can define more than one α-quasi-clique
containing n0. Consider, for instance, the node 0 in the network that is shown in Figure 1a and α = 0.5.
When searching for an α-quasi-clique containing 0 we have many possibilities, for instance, Figure 1b,c
and d present 3 such possibilities. The community shown in Figure 1d corresponds to the α-quasi-clique
of maximal size. α-quasi-cliques of small sizes (such couples or triangles of nodes) lack of interest for
interpretability. Indeed, for any value of α and any node n0, a trivial α-quasi-clique community is a
couple of nodes composed of n0 and one of its neighbors (we assume the graph is connected and that
there is more than one node in the network), see, for instance, Figure 1b, another possibility is the
subgraph {0, 4}). Consequently, we focus on mining α-quasi-cliques of maximal size. Furthermore,
most real complex networks behave like scale-free networks, that is, their degree distribution follows a
power law, so, most nodes have low degree and the size of an α-quasi-clique is limited by the degree
of its nodes. Therefore, mining for the α-quasi-clique community of specific nodes with low degree
can potentially lead to trivial solutions, such as couples of nodes or triangles. For all these reasons,
our problem consists in finding α-quasi-cliques of maximal size. More precisely, we consider the
problem of finding an α-quasi-clique of maximal cardinality containing a given node. In other words,
given a starting node and a value of α, we want to detect its local community of maximal size, which
satisfies the rule of an α-quasi-clique as given in Definition 1. Mathematically, this task is formulated
in Problem 1.

Problem 1. The maximal α-quasi-clique local community problem
Given a node n0 of a graph G(V, E) and a parameter α (0 < α < 1), the purpose is to find the largest

α-quasi-clique community C(n0) containing n0, mathematically:

maximize
C

|C|

subject to n0 ∈ C

and |Γ(ni) ∩ C| > α(|C| − 1), ∀ni ∈ C.

(2)
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(a) (b)

(c) (d)

Figure 1. (a) A simple graph; (b–d) 0.5-quasi-cliques of different sizes containing the node 0: (b) an
α-quasi-clique of size 2; (c) an α-quasi-clique of size 3; (d) an α-quasi-clique of size 4.

The Problem 1 may have multiple solutions. Indeed, a node can belong to more than one
α-quasi-clique of the same size.

In the existing literature there are three heuristics that aim to solve this problem:

• the first one, introduced in [10] and later improved by [11], is called RANK-NUM-NEIGHS
(RNN). It is a greedy and iterative algorithm. At first iteration, the local community is only
composed of the starting node. Then, iteratively some nodes are chosen from the neighborhood
to enlarge the community. The choice of nodes is based on the number of common neighbors the
nodes have with the community provided that the satisfy the rule.

• the second one is an algorithm proposed in [19], which is an improved version of the QUICK
method proposed by [18] and designed to extract all of the maximal α-quasi-cliques in a network.

• The last one was given in [20], where the authors studied what they called the query-driven
maximum quasi-clique (QMQ) search. A method that aims to find the largest α-quasi-clique
containing a given set of nodes. Their proposal is based on the notion of core tree to organize
dense subgraphs recursively.

It is important to highlight that the problem that is addressed by the two latter methods is not
exactly the same as Problem 1. Indeed, in the version treated by those authors, the equality is admitted
in the rule (1). Thus, our problem is more restrictive in order to ensure that each node has more
connections than non-connections intra-community if α ≥ 0.5.

The solution of the Problem 1 has interesting applications in community detection. Some specific
examples in a big data context are:

• In a telecommunication network, where each node represents a person and there is an edge
between two nodes if and only if they exchanged a phone call. An application in anomaly
detection is finding communities that are almost cliques. According to [21]: “Detecting nodes
whose neighbors are very well connected (near-cliques) or not connected (stars) turn out to be
strange: in most social networks, friends of friends are often friends, but either extreme (clique or
star) is suspicious”.
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• In bioinformatics, the problem of clustering gene expression data is usually modeled as graph
decomposition problem into disjoint cliques (see [22,23]).

• In biology is the clustering of protein-protein interaction (PPI) networks to detect functional
groups. As discussed in [24] recently, experimental techniques have generated a large amount of
protein–protein interaction (PPI) data.

• In social network analysis, as pointed out by [25], on real data the communities are far away from
being highly dense. Therefore, the detection of quasi-clique can be much more appropriated than
detection complete cliques.

• Furthermore, very recently, in [26], the approach based on cliques was used to analyze FIFA World
Cup referees’ networks.

• Other examples, not detailed here, are the classification of molecular sequences in genome
projects [27], the analysis of massive telecommunication data sets [13], the cross-market customer
segmentation [28], etc.

3. The Upper Bound

3.1. The Importance of Calculating an Upper Bound

Problem 1 is NP-complete (see [8,9] for proof). Therefore, the methods that aim to solve it are
heuristics that run in reasonable amount of time. Unfortunately, heuristics are approximations that
do not guarantee optimality. Furthermore, they might lack of stability if there is randomness in the
process of execution. Calculating a bound on the optimal solution of an NP-complete problem allows
for evaluating the performance of a heuristic used to approach the solution. A bound allows measuring
how far the solution obtained via a heuristic is to the optimal one.

3.2. Calculation of the Upper Bound

A baseline bound has already been proposed in [12]. Here, we present an improved version that
is based on an important theorem concerning the diameter of an α-quasi-clique (see Appendix A for
proof).

Theorem 1. Let C be an α-quasi-clique and α ≥ 0.5, then the diameter of C is at most 2.

The use of Theorem 1 considerably reduces the time and search space for the problem 1.
Certainly, Theorem 1 implies that for α ≥ 0.5 the nodes in the optimal solution of problem 1 will be
located at most at a distance 2 of the starting node n0. Certainly, dense components naturally have
small diameters.

In the following, we will only consider values of α ≥ 0.5, because only communities of high
density are of our interest, then Theorem 1 holds.

In this sense, for the calculation of the upper bound, we will reduce the search space to the
first and second neighborhood of n0. Not only this operation is useful to save space (as we do
not need to care about nodes or edges located at a distance greater than 2 from the starting node),
but it also considerably improves the upper bound to get closer to the optimal solution as we will
see in the experimental part. Then, we consider the subgraph induced by n0, Γ(n0) and Γ(Γ(n0)).
Hereafter, we will denote Γ1,2(n0) this subgraph (for any graph G = (V, E), and a subset S ⊂ V of
vertices of G, the induced subgraph G[S] is the graph whose vertex set is S and whose edge set consists
of all the edges in E that have both endpoints in S), which is,

Γ1,2(n0) = G[n0 ∪ Γ(n0)) ∪ Γ(Γ(n0))].

Hereafter, we will denote C∗(n0) the community that optimizes Problem 1 for a given node n0.
Subsequently, an optimal solution for Problem 1 will be |C∗(n0)|.
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The bound presented in this study is strongly based upon Theorem 2 (see Appendix A for proof
and [11,12] further discussion):

Theorem 2. Upper bound B(n0) for the size of the maximal α-quasi-clique community C∗(n0) of node
n0 and the minimal internal degree.

Given a node n0 with degree d(n0), the size of the maximal α-quasi-clique community n0 can belong to
|C∗(n0)| is upper bounded by B(n0), given by:

B(n0) =

⌈(
d(n0)

α

)⌉
. (3)

Likewise, given an α-quasi-clique community C the minimal internal degree (number of connections inside
C) a node in C must have, denoted dmin, is:

dmin =
⌊
α(|C| − 1)

⌋
+ 1. (4)

The notations dxe and bxc denote the ceiling and the floor functions of a real number x,
respectively.

The bound B(.), given in Theorem 2, is reached if and only if all of the neighbors of n0 are
members of the local community. However, in most situations, this is not the case, specially for nodes
that have a degree higher than those of their neighbors.

Consider, for instance, the node 0 in the graph of Figure 1a, which has been drawn again
in Figure 2, and α = 0.5. For sake of simplicity, in the figure the bound B(.) for each node is
given in red underlined text. According to Theorem 2, an upper bound for node 0 is B(0) = 8,
then, C∗(0) ≤ 8. This bound is reached if and only if all of the neighbors of node 0 are in C∗(0).
The minimal required degree for an α-quasi-clique of size 8 is 4 (according to Equation (4) in Theorem 2),
whereas nodes 1, 2, 3, and 4 can be connected to, at most, 3, 3, 1, and 1 nodes, respectively (because of
their degrees). We deduce that the upper bound cannot be achieved and C∗(0) < 8. Indeed, by carefully
examining Figure 2, one can easily deduce that C∗(0) = {0, 1, 2, 5}, which is a community of size 4.
Thus, the neighbors of 0 with the low degree (i.e., with low bound), nodes 3 and 4, are not members of
the optimal community.

Figure 2. A graph and the upper bound for each node in red underlined text. The bound has been
calculated using the Theorem 2 for α = 0.5. For node 0, the bound B(0) = 8 cannot be achieved, since
this requires that all of its neighbors be members of a community of size 8, whereas all of the nodes in
the neighborhood have a bound smaller than 8.

From this example, we conclude that, for a node having neighbors with a degree lower than its
own degree, the bound given in Theorem 2 cannot be achieved.

In general, for any node n0, B(n0) is reached if and only if all its neighbors are part of C∗(n0).
In that case, C∗(n0) would be also upper bounded by min

n∈Γ(n0)
B(n) (the lowest bound among all of
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the neighbors’ bounds). For our example, this is incompatible as the optimal solution is C∗(0) = 4,
whereas min

n∈Γ(0)
B(n) = 2 (bound of nodes 3 and 4).

Let us formalize all of these ideas with a bigger graph. Consider a node with 12 neighbors,
like the node 0 that is represented in Figure 3 and α = 0.5. In the figure, the size of each node has
been drawn proportional to its degree (i.e., its bound). For each neighbor the upper bound (calculated
basing on Theorem 2 for α = 0.5) is written in red underlined text. To simplify only the edges between
node 0 and its neighborhood have been drawn. Without loss of generality, the node labels were
attributed in ascending order according to the degree of each node. Notice that the bound B(0) = 24
cannot be achieved, since 10 neighbors have an upper bound smaller than 24. Indeed, as we will see in
the next subsection, the optimal upper bound for this example is 12.

Figure 3. A scheme of a node 0 and its neighbors, the node sizes are proportional to value of bound.
The bound values, calculated according to Theorem 2 for α = 0.5, are given in red underlined text for
each neighbor.

3.3. The Algorithm

The algorithm to obtain an upper bound for the maximal α-quasi-clique community of a given node
problem is divided in two main parts:

• Part I: “Improvements”: described in Algorithm 1, it includes the definition of the first and
second neighborhood graph of n0, Γ12(n0); the initialization of the upper bounds for all nodes
in Γ12(n0) according to Theorem 2, along all the steps these values will be updated and saved in
a table B; finally, the search of improvements in the values of bounds is iteratively performed
until no improvement is detected using the function bound() described in Part II. There is an
improvement if the bound of at least one node in Γ12(n0) has diminished.
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Algorithm 1 Part I: Iterative improvements in the bound calculation.
Require: The graph G(V, E), a node n0 ∈ V and a parameter α.
Ensure: An upper bound for the local α-quasi-clique community size of node n0.

1: Define the sub-graph Γ12(n0).
2: for each node v in Γ12(n0) do
3: Set B[v] = B(v) (according to Equation (3) in Theorem 2).
4: end for
5: while there is at least one improvement do
6: for each node v in Γ12(n0) do
7: if bound(Γ(v), v, B, α) < B[v] then
8: B[v] = bound(Γ12, v, B, α)
9: There is an improvement

10: end if
11: end for
12: end while
13: return B[n0]

• Part II: the bound() function : described in Algorithm 2, this function calculates the bound for a
given node per se taking into account the bounds of its neighbors. It takes four input parameters:
the node n0, its neighborhood graph Γ12(n0), the table of bounds B and α. First, a frequency
distribution table of neighbors’ bounds is elaborated. These values are denoted Bneigh

i and the
associated frequency fi for i ranging from 1 to p, where p denotes the total number of different
values of neighbor bounds (for instance, see Table 1 for the graph in Figure 3). Throughout the
function, the bound of n0 is denoted B and initially set to B(n0). At each iteration i, three values
are updated: dr, Bi, and Ni:

– dr is the remaining degree and corresponds to the degree (number of connections) of n0

resulting from disregarding the neighbors having the bound smaller or equal to Bneigh
i .

– Bi is a value of bound calculated using Theorem 2 and considering as input the remaining
degree dr in Equation (3) instead of d0. That is:

∀ iteration i Bi =

⌈(
dr

α

)⌉
and dr =

(
d(n0)−

i

∑
j=1

f j

)
. (5)

– Ni is the number of neighbors that can satisfy the bound Bi, that is, their bound is greater or
equal to Bi.

At iteration 0 the initial values are dr = d(n0), B0 = B(n0).
One can remark that there can be as many iterations as p.
The algorithm stops when a feasible solution is found. That is, when the remaining degree is

maximal and such that there are at least enough neighbors that can satisfy the bound associated to
such a value of remaining degree (rigorously, it is the value of dmin = (

⌊
α(|Bi| − 1)

⌋
+ 1) that must

be compared to Ni because the purpose is to compare the minimal requirement of connections to
the existing ones. However, this value turns out to be the remaining degree dr), mathematically that
means, dr ≤ Ni.
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Algorithm 2 The function bound().
Require: A node n0, its neighborhood Γ(n0), the table of neighbors’ bounds B and a parameter α.
Ensure: An upper bound B for the local α-quasi-clique community size of node n0.

1: Calculate the frequency distribution of neighbors’ bounds B(v) ∀v ∈ Γ(n0), the resulting values
are denoted Bneigh

i and the associated frequency fi (∀i ∈ {1, . . . , p}).
2: // Initialize the iterations
3: Set B = B(n0), i = 0, dr = d(n0), B0 = B(n0) and calculate N0 (number of neighbors whose bound

is at least equal to B0).
4: while (dr > Ni) do
5: i=i+1
6: Update dr = (dr − fi) and Bi =

⌈(
dr
α

)⌉
, calculate Ni

7: if Bi ≤ Bneigh
i then

8: B = Bneigh
i

9: Break
10: else
11: B = Bi
12: end if
13: end while
14: return B

For our example in Figure 3, the frequency distribution table of the upper bounds for all the
neighbors is given in Table 1. There are, in total, p = 5 different values (2, 6, 12, 20, and 30) with
their associated frequencies 3, 1, 5, 1, and 2, respectively. At the beginning, we have B = B(0) = 24,
dr = d(0) = 12 and B0 = 24. Only 2 neighbors satisfy the bound B0, that is, nodes labeled 11 and 12,
then N0 = 2. Thus, the bound B0 can not be achieved, since dr > N0 and the iterations in the while
loop start:

• i = 1, dr = 9 (after disregarding nodes 1, 2, and 3), B1 = 18, N1 = 3 (nodes 10, 11 and 12).

Since B1 = 18 > Bneigh
1 = 2, then B = 18; dr > N1, then we iterate once more.

• i = 2, dr = 8 (after ignoring nodes 1, 2, 3, and 4), B2 = 16, and N2 = 3 (nodes 10, 11 and 12).

Because B2 = 16 > Bneigh
2 = 6, then B = 16; dr > N2, we continue....

• i = 3, dr = 3 (after ignoring nodes 1, 2, 3, 4, 5, 6, 7, 8, and 9), B3 = 6, and N3 = 9 (nodes 4, 5, 6, 7,

8, 9, 10, 11, and 12). Because B3 = 6 < Bneigh
3 = 12, then B = Bneigh

3 = 12 and the algorithm exits
the while loop following the break statement.

At this iteration, the algorithm stops and returns B = 12. Therefore, a feasible an maximal solution
has been detected, indeed, eight neighbors have a bound greater or equal to 12 and only six are needed
according to Equation (4) in Theorem 2.

Table 1. Frequency distribution of bound B for the neighbors of node 0 in Figure 3.

Iteration i Value of Bound Bneigh
i Frequency fi Remaining Degree dr Bound Bi Neighbors Ni

0 - - 12 24 2
1 2 3 9 18 3
2 6 1 8 16 3
3 12 5 3 6 9
4 20 1 2 4 9
5 30 2 0 0 12

For the sake of interpretation, the graphical execution of the algorithm is given in Figure 4. In the
figure, the points on the blue line present the bound Bi calculated for each value of remaining degree
(according to Equation (5)). We consider, on the left, no neighbor is ignored, so the remaining degree
is maximal and equal to dr = d(0) = 12, whereas on the right all neighbors are ignored and dr = 0.
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The bars in orange present the bound for each neighbor according to its labels given in the horizontal
axis. This bar chart looks like a staircase increasing function where each step represents each value of
neighbor bound Bneigh

i . The optimal value of bound is found when both, the line and the bar chart,
intersect for the first time. The progress of iterations are given from left to right, thus at the beginning
there are not enough neighbors to satisfy the bound B. As we move from left to right the value of
bound B decreases whereas the available neighbors have higher bounds, up to a feasible solution is
achieved. For this example, the optimal value, B = 12, is found in iteration 3. Indeed, just before,
in iteration 2 we have B = 16, dr = 8 and N3 = 3 (i.e., only 3 neighbors have bound great or equal to
16). The values Ni can be determined from the graphic by imagining an horizontal line that intercepts
the blue line at a given iteration and counting the number of bars that are intersected. For instance,
at iteration 2 the horizontal line cut the vertical axis at 16 and intersects the bars representing neighbors
10, 11 and 12 (the neighbors that satisfy bound B2 = 16), then N2 = 3. Bounds B3 = 6 and B4 = 4 are
feasible solutions but they are not maximal.

The proposed algorithm calculates the optimal upper bound by initializing it with a high value
and then iteratively reducing it until a feasible solution is found. It is important to highlight that the
optimal bound can also be obtained by starting with low values, for instance 0, and then, iteratively
increasing it just before an unfeasible solution is obtained. For our example in Figure 4, this comes
back to consider the values Bneigh

i < 12, which is 0, 4, and 6.
Furthermore, the graphical solution that is presented in Figure 4 can be very useful. Indeed, all of

the points on the line show the values of bound B for a given value of remaining degree dr, which can
be obtained by counting the number of bars from a given point to the right, this value corresponds to
the number of required connections to achieve B. Besides, as discussed above, given a point on the line,
the number of connections that satisfy the bound Ni can also be read from the graphic. For instance,
if for any i we have Bi = 14, then dr = 7 and Ni = 3. These interpretations from the graphic lead
us to a simple way to obtain the optimal value of bound. Certainly, for any value of bound B on the
line, it is necessary to look for the point where the line intersects the bars, from that point to the right
all of the solutions are feasible. In contrast, from that point to the left all the solutions are unfeasible.
Then, the optimal bound takes place always in the intersection. For any node with degree d > 0,
the line of bounds is decreasing and always intersects the horizontal axis in the point (B = 0, dr = 0).
This guarantees that the line always intersects the bars, the only exception is the case when all of the
neighbors have a bound higher than that of the starting node. However, in that case, the optimal
bound is equal to the starting value, that is B = B(n0) with dr = d(n0), as given in Equation (3) from
Theorem 2.
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Figure 4. Graphical execution of the function bound() described in Algorithm 2 for the node 0 in Figure 3.

3.4. Complexity

The calculations of complexity are given for the worst case scenario.
We start by calculating the complexity of the bound() function, which is, the calculation of the

upper bound per se. By carefully examining the steps in Algorithm 2, we can see that there are two
main time consuming operations:

• The calculation of the frequency table implies to sort the values of neighbors’ bounds and count
the frequencies. This operation requires the necessary time to sort p values, since p is, at most,
|Γ(n0)| = d0. Depending on the sorting algorithm in the worst case, this operation can perform
in O(d2

0).
• The operations in the while loop (lines 4 to 13) to find the optimal value of bound can be executed

using a binary search algorithm. Certainly, the purpose is to find a value in the frequency table of
sorted neighbors’ bounds. Indeed, each row in the frequency table (see Table 1) corresponds to a
step in the staircase bar chart diagram in Figure 4. The purpose is to determine the step (iteration)
i, where the line intersects the bar chart. The values Bi, dr and Ni can be directly calculated
from the frequency table. Given a step i with its corresponding value of dr, one of the following
situations can take place:

– Ni < dr implies block i is in the area of unfeasible solutions, then, the search must continue
in the blocks corresponding to greater values of i (to the right following the blue line in
the graphic).

– Ni = dr implies the optimal bound is B = Bi.

– Ni > dr implies block i is in the area of feasible solutions. However, it is necessary to verify
whether we are in the block of the maximal solution. If and only if Ni−1 < dr(i − 1), the
optimal bound is B = Bneigh

i ; otherwise, the search must continue in the blocks corresponding
to smaller values of i (to the left following the blue line in the graphic).

For the example graph in Figure 4, we need only one iteration using Binary search. We have
p = 5, then the initial value i = 3 (the value in the middle of Table 1). We set N3 = 9, dr = 3,
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then Ni > dr, which means that block 3 is in the area of feasible solutions but it is possible to improve.
Next, we notice N2 < dr(2) (3 < 8) and conclude that the optimal bound is B = Bneigh

3 = 12.
This operation runs inO(log(p)), since p ranges from 1 to d0, then we have complexityO(log(d0))

in the worst case.
Finally, the complexity of the bound() function for a node n0 with degree d0 is: O(d2

0) +

O(log(d0)) = O(d2
0). That is, the most consuming time operation is the elaboration of the frequency

table.
Now, let us focus on the complexity of the algorithm of improvements, described in Algorithm 1.

The loop of improvements is the most time consuming task, previously, there are two operations:

• The definition of the first and second neighborhood graph Γ12(n0) which runs in O(d0 +

∑v∈Γ(n0)
dv). Indeed, the definition of the first neighborhood needs |Γ(n0)| = d0 operations.

Subsequently, to extract the second neighborhood, for each neighbor v, dv operations are needed.
• The calculation of the initial upper bound for all the nodes in Γ12(n0) using Equation (3) from

Theorem 2 requires O(|Γ12(n0)|) operations.

Finally, let us consider the most onerous task of the whole algorithm, that is the while loop of
improvements. At each pass the function bound() in Algorithm 2 is executed for all the nodes in
Γ12(n0). As we have seen above, for each node v this runs in O(d2

v). Afterwards, one iteration runs in
time ∑v∈Γ12(n0)

(d2
v). Now, the issue is to determine how many iterations we need. We consider there is

an improvement if at least for one node in Γ12(n0) its bound has been reduced by at least one unit. In
the worst case scenario, at each iteration there is only one improvement for one node by only one unit,

which means that, for a node v we can have at most

(⌈(
d(v)

α

)⌉)
iterations. Finally, the complexity of

our algorithm becomes O

 ∑
v∈Γ12(n0)

⌈(
d(v)

α

)⌉
∑

v∈Γ12(n0)

(d2
v)

.

We remark the iterative improvements might be very time consuming. However, as we will see in
Section 4, for real networks important improvements take place during the very early iterations.

4. Experimental Results

This section is divided in three subsections. First, we evaluate the bound with a small real network
for which it is possible to calculate the optimal solution of Problem 1 for all the nodes. Next, we
compare the proposed bound to the baseline version studied in [12]. Finally, we consider the impact of
the iterative improvements part of the algorithm on the final value of the bound since it is the most
time consuming part.

All of the evaluations are performed using the following four real networks commonly used in
social network analysis. All these datasets are publicly available online (please, see [29] for the details):

• “The Zachary Karate Club network” (karate) [30]: a network of members of a karate club at a US
university in the 1970s, 34 nodes and 78 edges.

• “The American College football network” (football) [31]: a network of American football games
between colleges during regular season Fall 2000, 115 nodes and 613 edges.

• “Books about US politics” (polbooks) [32]: a network of books about US politics published
around the time of the 2004 presidential election and sold by the online bookseller Amazon.com.
Edges between books represent frequent co-purchasing of books by the same buyers, 105 nodes
and 441 edges.

• “Political blogs” (polblogs) [33]: a network of hyperlinks between weblogs on US politics,
1224 nodes and 16715 edges.



Electronics 2020, xx, 5 13 of 21

4.1. Evaluation of the Bound in a Small Real Network

We study deeply the karate network since the optimal solution for the maximal α-quasi-clique
community of a given node problem can be exactly determined for every node in such a small network.
To simplify, we consider α = 0.5. Indeed, in this situation, the calculation of the upper bound given
in Equation (2) turns out to multiply by two the degree of the node. The Figure 5 shows the karate
network. Table 2 presents the frequency table of the difference between the upper bound and the
optimal community size value. If the difference is 0, then the bound returns exactly the optimal value.

Figure 5. The Zackary Karate club network graph.

Table 2. Results for the karate network.

Difference between the Bound
and the Optimal Value Number of Nodes Percentage of Nodes Concerning Nodes

0 28 82 % -
1 4 12 % 4 and 8
2 2 6% 5, 6, 7 and 11

TOTAL 34 100% -

We can see from Table 2 that the algorithm is exact for 82% of the nodes. That is, the upper bound
is completely accurate. Concerning the remaining 18%, the difference between the bound and the
optimal value is either 1 or 2. Now, we will deeply analyze these cases.

Figure 6 shows the optimal local community for node 4 (the same for node 8), which is,
the maximal 0.5-quasi-clique containing that node is of size 6. However, the upper bound returned by
our method is 8. Accordingly, there is a gap of two units. From the figure, we can remark that all the
neighbors of node 4 (the same for node 8) have a degree of at least 4, which is exactly the required
minimal degree for a community of size 8 (see Equation (4)). Furthermore, the optimal community is
nearly a complete clique, which is, by carefully examining the members of the optimal community
they all have an internal degree greater or equal to 4, whereas dmin = 3 for a community of size 6. The
proposed bound tends to exceed the optimal value in such a situation, since there is no indication to
conclude that the optimal community is smaller than 8. However, by inspecting the figure, no node
among the nodes in light blue would satisfy the rule of an α-alpha-quasi-clique if it became member of
the local community.
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Figure 6. The Karate network, in dark blue the nodes belonging to the maximal 0.5-quasi-clique for
nodes 4 and 8. In light blue the nodes being part of the first and second neighborhood graph of node 4
that are not members of the optimal community.

In addition, Figure 6 allows illustrating another advantage of our algorithm. All of the nodes
being part of Γ12(4) are colored either in dark or light blue. Only considering this subgraph (instead of
the whole graph) to solve problem 1 considerably reduces the search space, since central nodes having
a high degree in the whole graph have fewer connections in the resulting subgraph Γ12, such as
node 34.

Now, consider nodes 5, 6, 7, and 11. Figure 7 presents the optimal solution for each of those nodes
as well as the first and second neighborhood graph. The optimal community that solves Problem 1
containing each of these nodes is of size 5, whereas the upper bound that is returned by the algorithm
is 6. First of all, it is important to highlight that, when α = 0.5, the proposed algorithm can only return
even numbers as the calculations are based on Equation (2). Subsequently, if the optimal solution
corresponds to an odd number and α = 0.5, the bound cannot be achieved. Fortunately, this situation
only arises for α = 0.5. Furthermore, idem to nodes 4 and 8, there is no indication to deduce that the
optimal community is smaller than 6. However, we can see that the internal degree of four nodes (5, 6,
7, and 11) is equal to the minimal internal degree for a community of size 5 that is 3 (see Equation (4)).
Moreover, nodes 5 and 11 have degree 3. This can be an indicator that the value is close to the optimal
solution for any heuristic that returns a community of odd-sized.

4.2. Comparison of the Proposed Bound to the Baseline Version

Now, we will study the impact of considering the first and second neighborhood subgraph,
instead of the whole graph, in the bound calculation in order to compare the bound to the baseline
version in [12].

For the four real networks, Figures 8 and 9 present the boxplots of the size of the 1st- and
2nd-neighborhood subgraph, Γ1,2(.) in terms of number of nodes and number of edges respectively
for every node in each network. In each plot, the value of the total number of nodes N and the total
number of edges M in the whole network is given and represented by a horizontal line.
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Figure 7. The Karate network, In dark blue the nodes belongging to the maximal 0.5−quasi-clique for
nodes 5, 6, 7, and 11. In light blue the nodes of the first and seconde neighborhood graph that are not
members of the optimal community.
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Figure 8. Boxplot of the number of nodes in the 1st-and-2nd-neighborhood subgraph, Γ1,2(.), for all of
the nodes in each network. The red line shows the total number of nodes in the whole network, N.
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Figure 9. Boxplot of the number of edges in the 1st-and-2nd-neighborhood subgraph, Γ1,2(.), for all of
the nodes in each network. The blue line shows the total number of edges in the whole network, M.

Figures 8 and 9 show that the search space is reduced for all the nodes in the four networks,
in terms of both, the number of nodes and the number of edges. One can remark that for the football
and polbooks networks the Γ12(.) subgraph is even about half the size of the entire network for all
the nodes. For some nodes the Γ12(.) graph is really small, for instance, in the polbooks and polblogs
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networks; on the other hand, for some exceptional nodes in karate and polblogs the search space can
even get close in size to the whole network, for instance, this happens for some nodes that occupy a
central position, which is, they have a high degree.

Now, we will compare the value of the proposed bound to the baseline method bound. For the
four real networks and different values of α, Figure 10 compares the bound obtained by executing
the algorithm taking as input the whole graph G to that obtained taking as input Γ12(.) for each of
the nodes in those networks. More specifically, the difference, called Gain between these two values,
is calculated. This implies to execute the function bound() (described in Algorithm 2) with input
parameters n0, Γ(n0), α and the table of bounds B calculated based on the whole G in the first case
and based on the Γ12 subgraph in the second case. To allow the comparison only one iteration of the
improvements part described in Algorithm 1 is performed. That is, only one pass in the while loop.
Each bar in the figure represents the percentage of nodes for which both bounds are equal (in green,
Gain = 0) and the complement, which is, the percentage of nodes for which the proposed bound is
tighter that the one calculated based on the whole graph (in red, Gain > 0).
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Figure 10. Comparison between the bound calculated considering the whole graph and the bound
calculated considering only the first and second graph of the starting node, for both cases only one
iteration of improvements has been performed.

We can see from the Figure 10 that the proposed bound is, in all cases, more accurate for all of the
datasets. The results do not seem to vary a lot for the different values of α. This can be explained by
the fact that the frequencies in the frequency table elaborated in the bound() function do not vary from
one value of α to another one. We can also see that for the football dataset there is a refinement of the
bound in about 90% of cases. For polbooks and polblogs in about 30% of cases the proposed bound is
tighter (more specifically 33% for polbooks).

4.3. Impact of the Iterative Improvements

At present, let us focus on the impact of the iterative improvements performed during the
execution of the algorithm (while loop in Algorithm 1). Tables 3 and 4 show the amount of improvement
in the value of bound in units (denoted Improvement) per number of iteration (denoted it). Table 3 is
composed of six subtables, each one corresponds to a given network and a value of α. Since there is
no so much variability, we chose only two values of α, 0.5 and 0.8. For a given subtable, each entry
represents the percentage of nodes in the whole network for which the bound has decreased in the
units given by the improvement value at a given iteration. For instance, for 36% of nodes in the football
network the bound has decreased by two units at iteration 2 (relative to iteration 1). The last column
of each subtable presents the total percentage of nodes for which there was an improvement of any
amount at a given number of iteration, denoted TI. The numbers are given in bold whenever some
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improvement took place for at least one node. For instance, in total for 51% of nodes in football, the
bound experimented some improvement (then, it got closer to the optimal solution) at the second
iteration.

Table 3. Table of improvements per iteration for three real networks, values are given in percentage
(%).

karate, α = 0.5 football, α = 0.5 polblloks, α = 0.5

Improvement Improvement Improvement

it 0 1 2 TI it 0 1 2 3 4 5 6 TI it 0 1 2 3 4 5 6 TI

1 100 - - 0 1 100 - - - - - - 0 1 100 - - - - - - 0
2 91 - 9 9 2 49 - 36 - 12 - 3 51 2 66 - 25 - 8 - 2 34
3 44 - - 0 3 95 - 3 - - - - 3 3 80 - 15 - - - - 15

4 33 - 4 - - - - 4 4 75 - 1 - - - - 1
5 14 - - - - - - 0 5 35 - - - - - - 0
6 5 - - - - - - 0
7 2 - - - - - - 0
8 - - 1 - - - - 1
9 1 - - - - - - 0

karate, α = 0.8 football, α = 0.8 polblloks, α = 0.8

Improvement Improvement Improvement

it 0 1 2 TI it 0 1 2 3 4 5 6 TI it 0 1 2 3 4 5 6 TI

1 100 - - 0 1 100 - - - - - - 0 1 100 - - - - - - 0
2 91 3 6 9 2 49 23 15 10 3 - - 51 2 66 18 9 6 2 - - 34
3 44 - - 0 3 95 3 - - - - - 3 3 80 14 1 - - - - 15

4 33 4 - - - - - 4 4 75 1 - - - - - 1
5 14 - - - - - - 0 5 35 - - - - - - 0
6 5 - - - - - - 0
7 2 - - - - - - 0
8 - 1 - - - - - 1
9 1 - - - - - - 0

Table 4. Table of number of improvements per iteration for the polblogs network, α = 0.5.

Amount of Improvement

it 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 44 TI (%)

1 1224 - - - - - - - - - - - - - - - - - - - - 0
2 819 113 62 48 45 21 24 11 24 17 7 9 5 5 3 2 1 2 1 1 2 33
3 931 103 73 55 26 4 - 1 - - - - - - - - - - - - - 21
4 1003 99 73 6 - - - - - - - - - - - - - - - - - 15
5 1019 110 7 - - - - - - - - - - - - - - - - - - 10
6 993 88 - - - - - - - - - - - - - - - - - - - 7
7 932 60 - - - - - - - - - - - - - - - - - - - 5
8 791 61 - - - - - - - - - - - - - - - - - - - 5
9 706 7 - - - - - - - - - - - - - - - - - - - 1
10 513 4 - - - - - - - - - - - - - - - - - - - 0
11 355 - - - - - - - - - - - - - - - - - - - - 0
12 173 - - - - - - - - - - - - - - - - - - - - 0
13 60 - - - - - - - - - - - - - - - - - - - - 0
14 28 - - - - - - - - - - - - - - - - - - - - 0
15 17 1 - - - - - - - - - - - - - - - - - - - 0
16 6 - - - - - - - - - - - - - - - - - - - - 0
17 5 - - - - - - - - - - - - - - - - - - - - 0
18 3 - - - - - - - - - - - - - - - - - - - - 0
19 1 - - - - - - - - - - - - - - - - - - - - 0

Now let us comment the results in Table 3. Iteration 1 being the starting point, no improvement
takes place. The number of iterations differs from one network to another one. In the football network,
for one node there is an improvement of one unit, even at iteration 8. Analogous, for one node in
polbooks the number of iteration goes up to 5. For the three networks, the amount of improvement
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is much more accentuated at the second iteration. For instance, for some nodes the bound decreases
by even six units. This leads to new ideas in practice, such as early stopping at the first iterations;
furthermore, the iterative improvements part is the most time consuming task in the whole method as
discussed in Section 3.4. We consider it relevant to explain why at some iterations no improvements
take place, for instance, this situation arises in about 14% of cases of the nodes in the football network
at iteration 5. Just remind that, in the Algorithm 1, there is an improvement if at least for one node
in Γ12(.) the bound has decreased, this node can be different from n0. In Table 3 we count only the
improvements for the target node n0. One can also remark that there are no improvements at the
final iteration which is quite normal since, whenever there is some an improvement, a supplementary
iteration is performed.

Finally, we study the results for the polblogs network. The Table 4 shows the amount of
improvements per number of iteration (it). Given the size of the network, the values are not given in
percentage, except for the last column, TI.

We remark important improvements at second iteration, where for about 33% of nodes the
bound becomes tighter. The amount of improvement goes up to 44 units. For one node there is an
improvement of two units at the 15th iteration. For four nodes, there are still improvements at iteration
10. These results show that it is worth performing at least a second iteration pass or even third or forth,
because for 21% and 15% of nodes, respectively, there are important improvements.

5. Conclusions and Perspectives

The present research provides a method to evaluate heuristics searching to approach the maximal
α-quasi-clique community of a given node problem. This problem aims to detect subgraph of maximal size,
containing a node of interest in the network. This subgraph or community must verify the constraints
of an α-quasi-clique, more specifically, each node must be connected to more than a proposition α

of nodes in the community. This problem being NP-hard, existing methods to solve it are heuristics.
We propose an upper bound for the optimal solution that allows measuring how close a proposed
solution is to the optimal one. A theorem states that for high values of α, (greater than 0.5), the optimal
solution has a diameter of at most 2. In this sense, given the starting node, we extract the subgraph
containing the first and second neighborhood of the node, this returns a subgraph, where all nodes
are at a distance of at most 2 of the starting node. Experimentally, we showed that this reduces
considerably the value of the bound, so that, this latter gets tighter and gets closer to the optimal
value. Our algorithm consists in two parts, one part serving to calculate the upper bound per se
and another one performing iterative improvements. The experiments showed that a great amount
of improvement takes place at the first iterations for the majority of the nodes, which suggested to
early stop the algorithm if needed at first stages and allows for saving time in the execution. We also
presented a graphical solution or visualization of how to calculate the upper bound.

The calculation of a bound for an NP-complete problem opens the door for interesting
applications, for instance, heuristics that perform iterative calculations in order to approach the
optimal solution must stop once the bound is reached. In such a situation, one can be sure that the
algorithm reached the optimal solution.

One clue to improve the presented method is to try to reduce the diameter of the first and second
neighborhood graph, which has a diameter of at most 4, whereas the optimal solution has, at most, a
diameter of 2.

Another perspective for this work is to extend the Problem 1 to directed graphs. Indeed, this problem
is designed only for undirected graphs where the links between nodes are symmetric. One idea
would be to consider the definition of a clique for a directed graph where every two distinct nodes are
connected to each other in both directions. In that case, the rule of an α-quasi-clique should also be
modified to consider both directions.
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Appendix A

Proof of Theorem 1. Given an α-quasi-clique C, for any two distinct nodes u, v ∈ C, either u and v
are directly connected or not. Let us suppose they are not connected. For α ≥ 0.5, according to the
Definition 1, |Γ(u)| > |C|−1

2 and |Γ(v)| > |C|−1
2 . Since |Γ(u) ∪ Γ(v)| ≤ |C|, then Γ(u) ∩ Γ(v) 6= ∅ and

u and v have at least one common neighbor. Therefore, the distance between any two distinct nodes is
at most 2.

Proof of Theorem 2. n0 must respect the rule of an α-quasi-clique (see Equation (1) in Definition 1)
as it is part of C∗(n0). Let us denote din(n0) the number of internal connections of n0 in C∗. That is
din(n0) = |Γ(n0) ∩ C∗(n0)|. Then, we have:

din(n0) > α(|C∗(n0)| − 1)⇐⇒ din(n0)

α
+ 1 > |C∗(n0)|.

The left-hand side of this last expression gives un upper bound for |C∗(n0)|, which we denote
B(n0). Then, B(n0) can be written:

B(n0) =


din(n0)

α If
(

din(n0)
α + 1

)
is integer.⌊(

din(n0)
α

)⌋
+ 1 otherwise.

This expression is equivalent to:

B(n0) =

⌈(
din(n0)

α

)⌉

Since din(n0) is upper bounded by d(n0) we obtain:

B(n0) =

⌈(
d(n0)

α

)⌉
.

Analogously, given an α-quasi-clique C the minimal degree a node in C must have,
denoted dmin verifies:

dmin > α(|C| − 1)

since dmin is the minimum possible integer that respects this condition. Two situations can take place:

dmin =

{
α(|C| − 1) + 1 If α(|C| − 1) is integer.⌈
α(|C| − 1)

⌉
otherwise.

which is equivalent to:
dmin =

⌊
α(|C| − 1)

⌋
+ 1.
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