
Noname manuscript No.
(will be inserted by the editor)

An efficient method for mining the Maximal α-quasi-clique-
community of a given node in Complex Networks
A method for mining the Maximal α-quasi-clique-community of a node

Patricia CONDE-CESPEDES(1),(2) · Blaise NGONMANG(2) · Emmanuel

VIENNET(2)

Received: date / Accepted: date

Abstract Detecting communities in large complex

networks is important to understand their structure

and to extract features useful for visualisation or pre-

diction of various phenomena like the diffusion of infor-

mation or the dynamic of the network. A community

is defined by a set of strongly interconnected nodes.

An α-quasi-clique is a group of nodes where each mem-

ber is connected to more than a proportion α of the

other nodes. By construction, an α-quasi-clique has a

density greater than α. The size of an α-quasi-clique

is limited by the degree of its nodes. In complex net-

works whose degree distribution follows a power law,

usually α-quasi-cliques are small sets of nodes for high

values of α. In this paper, we present an efficient method

for finding the maximal α-quasi-clique of a given node

in the network. Therefore, the resulting communities
of our method have two main characteristics: they are

α-quasi-cliques (very dense for high α) and they are

local to the given node. Detecting the local commu-

nity of specific nodes is very important for applications

dealing with huge networks, when iterating through all

nodes would be impractical or when the network is not

entirely known. The proposed method, called RANK-

NUM-NEIGHS (RNN), is evaluated experimentally on

real and computer generated networks in terms of qual-

ity (community size), execution time and stability. We

also provide an upper bound on the optimal solution.

(1)LISITE - ISEP
10 rue de Vanves
92130 Issy-les-Moulineaux - France
Tel.: +33-01.49.54.52.41
E-mail: patricia.conde-cespedes@isep.fr

(2) L2TI-Université Paris 13
99 Avenue Jean Baptiste Clément
93430 Villetaneuse-france
E-mail: firstname.lastname@univ-paris13.fr

Keywords Community detection algorithms · Max-

imal α-quasi-clique · Local community detection ·
Complex networks · Density.

1 Introduction

A network is usually a complex system composed

of a set of entities, usually called vertices or nodes,

connected by links, also called edges. In the particular

case where the entities are people, the system is called

a social network. However, a lot of natural phenomena

can be modeled by networks; those complex networks

share important characteristics (degree distribution,

local clustering) and often exhibit community struc-

tures. The study of the communities has attracted a

lot of attention (see [24]). Detecting communities in
large complex networks is important to understand

their structure and allows to extract features useful for

visualisation [33] or prediction of various phenomena

like the diffusion of information or the dynamic of the

network or social recommendation [23].

A community is defined by a set of strongly

interconnected nodes. The density of links measures

the strength of the relationships in the community1.

However, most popular community detection methods

do not guarantee anything about the density of the

resulting communities (for instance, when using the

Newman-Girvan modularity [38], the density of the

output communities can become very low due to its

resolution limit [25]). Complete cliques2 are sets of

1 The density of links δ of a graph G with |E| edges et |V |
nodes is given by 2|E|

|V |(|V |−1)
.

2 A complete clique is a set of node such as every two dis-
tinct nodes are connected to each other.

2 P. Conde-Cespedes, B. Ngonmang and E. Viennet

nodes with maximal density. However, the size of a

clique is limited by the degree of its nodes. Particulary,

in complex networks whose degree distribution follows

a power law, the cliques can be very small or even

trivial, such as pair of nodes or triangles. Moreover,

the search of the largest clique in a graph is a well

known problem studied in graph theory called the

maximum clique problem (MCP) (see [27] and [11] for

a survey). This led to the relaxation of the concept of

a complete clique to an almost complete subgraph, also

called quasi-clique (the interested reader can refer to

[32], [43], [48] and [29] for surveys).

An α-quasi-clique (for 0 < α < 1) is a group of

nodes where each member is connected to more than

a proportion α of the other nodes3. Consequently,

an α-quasi-clique has a density greater than α. By

choosing α close to 1, an α−quasi-clique becomes an

almost complete clique. Considering an α−quasi-clique

instead of a complete clique can be preferable for

applications where interaction between members of

the community does not need to be direct and could

be successfully accomplished through intermediaries.

In the following, we will also call an α-quasi-clique

community an α-consensus community as we did in

[19], a preliminary version of this work.

Mining all the maximal α-quasi-cliques of a network

is NP-complete [28] [4]. Efficient exact methods or

approximations to solve it are available. However,

all these methods generally assume that the network

is entirely known and they try to find all existing

α-quasi-cliques. In some cases, the network can be so

large that one can have only local information about

some nodes or one can be only interested in the com-

munity of a particular node in the network. Moreover,

detecting the local communities of specific nodes may

be very important for applications dealing with huge

networks, when iterating through all nodes would be

impractical or when the network is not entirely known.

The detection of the community of a given node of in-

terest is also called local community detection problem.

In this paper, we present an efficient method for

approaching the α−quasi-clique community of a given

node problem. Therefore, the resulting communities

have two main properties:

1. they are α-quasi-cliques.

3 This definition of an α-quasi-clique is not unique. Most
authors define an α-quasi-clique as a set of nodes that have
a density greater than α, see for instance [1]. The definition
considered in this paper constitutes a relative relaxation of a
complete clique as it depends on the size of the quasi-clique.

2. they are local to the given node.

The maximal quasi-clique problem has already

been addressed, however, all previous studies try to

find a subgraph with no reference to a given node.

To the best of our knowledge we are the first to

address the maximal α-quasi-clique problem from a

local-community point of view. Our method, called

RANK-NUM-NEIGHS (RNN), is evaluated experi-

mentally on real and artificial complex networks in

terms of quality (community size), execution time

and stability. We also provide an upper bound on

the optimal solution and a practical application. The

experiments show that it provides superior results

than the existing methods in terms of time and stability.

This paper is organised as follows: Section 2 presents

definitions and notations. Then, Section 3 presents the

problem formulation. Section 4 gives an overview of re-

lated works. Section 5 draws our solution to this prob-

lem. In Section 6 the proposed solution is evaluated

and the results are discussed. Besides, the application

to a real network demonstrates the practical usefulness

of the presented approach. In Section 7 we present a

bound on the optimal solution. Finally, Section 8 draws

some conclusions and perspectives.

2 Definitions and notations

A graph G = (V,E), is defined by V the set of

vertices or nodes, and E the set of edges or links,

formed by pairs of vertices. In this paper we consider

undirected graphs, where edges are not oriented. The

neighborhood Γ (u) of a node u is the set of nodes v

such that (u, v) ∈ E. The degree of a node u, denoted

d(u), is the number of its neighbors, i.e. d(u) = |Γ (u)|.
An α−quasi-clique is defined as follows:

Definition 1 α−quasi-clique or α−consensus

community

Given an undirected graph G(V,E), and a pa-

rameter α with 0 < α < 1, an α−quasi-clique or

α−consensus community is the subgraph induced by

a subset of the node set C ⊆ V if the following con-

dition holds:

|Γ (n) ∩ C| > α(|C| − 1),∀n ∈ C. (1)

Equation (1) implies that each node in the quasi-

clique C must be connected to more than a proportion

α of the other nodes. In the following, we will call

Equation (1) the rule of an α−quasi-clique. This

rule constitutes a lower bound on the minimal internal

An efficient method for mining the Maximal α-quasi-clique-community of a given node in Complex Networks 3

connections of each node. Notice that for α = 1 an

α−quasi-clique is a complete clique. Notice also that

an α−quasi-clique has a density greater than α (see

appendix for the proof).

In the literature, one can find other definitions of

the so-called α−quasi-clique. For instance, in [34], the

authors considered a nearly similar definition. The only

difference is that in their definition the condiction (1)

has an equality sign. Thus, their definition allows each

node in the quasi-clique to be exactly connected to a

proportion α of the other nodes. Other variants are:

1. Definition of an α−quasi-clique based on the

density: given a graph G = (V,E), a subset of

vertices C ⊆ V is an α−quasi-clique if the edge

density of the induced subgraph is at least equal to

a threshold parameter α ∈ (0, 1). The edge density

of the set C is defined as δ(C) = 2e[C]
|C|(|C|−1) , where

e[C] is the number of edges induced by C.

This is the most common used definition of

α−quasi-clique. It was considered by many authors,

for instance [1][42] [47] [14], and it is less strict than

definition 1 as it concerns the connections of the

whole subset rather the connections of each node

individually. Therefore, an α−quasi-clique based on

definition 1 is also an α−quasi-clique in the sense

of this definition.

2. Definition of a (λ, γ)-quasi-clique: in [12], the

authors defined what they called a (λ, γ)-quasi-

clique as follows:

Given two parameters λ and γ with 0 ≤ λ ≤ γ ≤
1, the subgraph induced by a subset of the node

set C ⊆ V is (λ, γ)-quasi-clique if, and only if, the

following two conditions hold:

∀n ∈ C |Γ (n) ∩ C| ≥ λ(|C| − 1) and

e[C] ≥ γ |C|(|C| − 1)

2
This definition is more strict that definition 1 as it

imposes a lower bound for the density of the whole

subset. However, by taking γ = λ this definition

is almost equivalent to definition 1, except for the

equality sign in the first condition. Indeed, this con-

dition allows the number of internal connections of

a node to be equal or greater than a proportion α

of the other nodes. Whereas, definition 1 is a little

more strict by not admitting equality.

In this paper, we consider the definition 1 of an

α−quasi-clique. There are important reasons that sup-

port our choice.

The first variant based on the edge density of the whole

α−quasi-clique does not garantee that each node is

strongly connected to the other nodes. For instance,

consider the subgraphs in Figure 1. Both subgraphs

contain 12 nodes and 42 edges, so the edge density is

δ ≈ 0.63. They are both 0.6−quasi-cliques according to

the definition variant 1. However, only the graph on the

right is a 0.6−quasi-clique according to definition 1 as

each node is connected to 7 out of 11 nodes. Since the

nodes 10, 11 and 12 (in red) are weakly connected to the

other nodes of the graph on the left, they do not verify

the condition (1). Moreover, intuitively only the nodes

in blue can form a community. One can also verify this

situation by looking at the adjacency matrix. Indeed,

nodes in red are not well connected to the other nodes

whereas the number of connections is rather equitable

for all the nodes of the graph on the right.

Fig. 1 Two graphs of 12 nodes and 42 edges and edge density
0.63. However, only the graph on the right is a 0.6−quasi-
clique community according to definition 1. Indeed, since
nodes in red of the graph on the left are weakly connected to
the other nodes, they do not verify the condition (1).

If we consider the second variant of the α−quasi-

clique definition, given by [12], with γ = λ and the

definition given by [34], we realize they are equivalent.

However, both differ from our definition 1 in the

equality sign of the constraint (1). We decided not

to allow equality in order to guarantee the absolute

majority in the internal connections of each node

when α ≥ 0.5. Certainly, when α = 0.5, accepting

equality would lead to accept a node to have as many

connections as non-connections in the quasi-clique.

However, since we are looking for strongly connected

dense sub-graphs, we want to ensure each node has

more connections than non-connections.

In summary, by considering definition 1 we garan-

tee that the detected communities are robust, con-

4 P. Conde-Cespedes, B. Ngonmang and E. Viennet

tain strongly connected nodes and have an edge-density

greater than α.

3 Problem formulation

Since the size of an α−quasi-clique is limited by

the degree of its nodes, for complex networks whose

degree distribution follows a power law, mining for the

α−quasi-clique community of specific nodes with low

degree can lead to trivial solutions, such as pairs of

nodes or triangles. Indeed, those are α−quasi-cliques

or even complete cliques as they achieve maximal

density. Such trivial communities are not interesting

for applications. Therefore, the purpose is to find

quasi-cliques of maximal size.

In the literature, one can find several methods

for detecting the maximal α-quasi-clique of an entire

network: we mentioned some of them in Section 2. In

this paper we tackle a different problem. We aim to find

an α−quasi-clique of maximal cardinality containing a

given node. This problem can be formulated as follows4:

Problem 1 the maximal α−quasi-clique com-

munity (or quasi-clique) of a given node prob-

lem

Given a node n0 of a graph G(V,E) and a param-

eter α (0 < α < 1), the purpose is to find the

biggest α−quasi-clique or α−consensus community

C(n0) containing n0, mathematically:

maximize
C

|C|

subject to n0 ∈ C
and |Γ (ni) ∩ C| > α(|C| − 1),∀ni ∈ C.

(2)

In summary, the communities detected by the

method proposed in this paper have two main char-

acteristics:

1. They are α-quasi-cliques (according to definition 1),

therefore each node is highly connected to the other

nodes in the community and
2. they must contain a given node of interest. That is

why the problem we try to solve is a particular case

of the local community detection problem.

4 Notice that we used the word maximal instead of maxi-
mum. In graph theory a maximal clique is a clique which is
not a proper subset of another clique whereas a maximum
clique is a clique of the maximum cardinality in the graph.
Since we aim to find α−quasi-cliques containing a given node
of interest we are looking for maximal α−quasi-cliques in-
stead of for the maximum α−quasi-clique.

Notice that a node, can belong to more than

one maximal α−quasi-clique community. Therefore the

problem 1 can have multiple solutions.

4 Related works

We are the first to address the maximal α−quasi-clique

community of a given node problem to the best of our

knowledge. Either the existing methods for local com-

munity detection do not constraint the output com-

munities to be α−quasi-cliques (see for example [16],

[35], [5], [15], [39], [21]) or the existing methods for

mining α−quasi-cliques are not local to a given node

(such as [34], [12]). We call non local methods global,

opposite of local, as they consider the entire network to

detect α−quasi-clique communites (according to defi-

nition 1). We consider relevant to compare the results

of our method to the results of global methods since

there is a guarantee on the high density of the result-

ing communites. In the literature, we found three such

methods:

– The QUICK method [34]: It was designed to

efficiently extract all the maximal α−quasi-cliques

of a given network. This algorithm uses a depth

first search method to explore the search space:

starting with a node n0, it builds all the α−quasi-

cliques of increasing sizes that contain n0. At each

following step, it moves to the next unexplored

node and builds α-quasi-cliques that do not contain

already explored nodes. Because the search space

is exponential on the number of nodes, QUICK

uses several effective pruning techniques based

on the degree of the nodes, the diameters of the

constructed quasi-cliques to prune unqualified

vertices as early as possible. Despite the proposed

pruning techniques, this method is not suitable for

very large graphs and it does not guarantee that

each node will be assigned to the largest clique it

belongs to.

– The Louvain method adapted to Zahn-

Condorcet and Owsiński-Zadrożny criteria,

also called the generic Louvain method [13]:

The generic Louvain method is an extended version

of the original Louvain method introduced in [10]

to optimize the Newman-Girvan modularity [38].

Because of its rapidity, in [13] the authors proposed

to adapt the Louvain method to other seven quality

functions and called this extended version the

generic Louvain method. Two quality functions of

particular interest for us are the Zahn-Condorcet

(ZC)[20], [51], [36] and the Owsiński-Zadrożny

An efficient method for mining the Maximal α-quasi-clique-community of a given node in Complex Networks 5

(OZ)[41] criteria. Indeed, it was shown in [17],

[18] that the partition corresponding to the op-

timal solution of the Zahn-Condorcet problem is

composed of 0.5-quasi-clique communities. The

Owsiński-Zadrożny criterion is a generalization of

the Condorcet problem where the optimal partition

can contain only α−quasi-cliques (see [17] and [18]

for proof). Although the generic Louvain method

is very fast compared to many global community

detection methods, it does not intend to maximize

the size of alpha-cliques. Therefore, it is not com-

petitive with the method proposed in this paper as

it does not address problem 1. The performance in

terms of quality of the generic Louvain method can

be seen in reference [19].

– The RLS-DLS method [12]: This method is

an heuristic for the problem of finding max-

imum (λ, γ)−quasi-cliques. The definition of a

(λ, γ)−quasi-clique was given in Section 2. The

RLS-DLS method aims at extending the work done

by other authors in efficient clique algorithms, in

particular Reactive Local Search (RLS) and Dy-

namic Local Search for Maximum Clique (DLS-

MC). Both algorithms are based on stochastic lo-

cal search methods. The DLS-MC algorithm for the

maximum clique problem is based on the idea of as-

signing penalties to nodes that are selected to be

part of a clique [45]. The RLS algorithm uses a re-

active mechanism to control the amount of diversi-

fication during the search process by means of pro-

hibitions [8], [7].

5 The proposed method

This section presents the proposed heuristic to ap-

proach the solution of the maximal α−quasi-clique com-

munity of a given node problem, the RANK-NUM-

NEIGHS (RNN) algorithm. First, we will discuss about

the scalability of the approach. Second, we will present

a general greedy scheme for local community detection.

Next, we will present introduce and describe the RNN

algorithm.

5.1 Scalability

An important advantage of our approach is its scalabil-

ity. In fact, consider the following theorem concerning

the diameter of an α−quasi-clique (see appendix for

proof):

Theorem 1 Let C be an α−quasi-clique for α ≥
0.5, then the diameter of C is at most 2.

Theorem 1 implies that for α ≥ 0.5 the nodes in the

optimal solution of problem 1 will be located at most

at a distance 2 of the starting node n0. Indeed, dense

components naturally have small diameters.

Although the proposed method in this paper works for

any 0 < α < 1, in the following we will focus on values

of α ≥ 0.5 because we are interested in communities of

high density.

If α ≥ 0.5 then Theorem 1 holds. In this case, to ap-

proach the problem 1 we do not need the whole graph

as input, but only the first and second neighborhood

(the neighbors Γ (n0) and the neighbors of the neigh-

bors Γ (Γ (n0))) of n0
5. In the following, given a node

n, we will denote Γ1,2(n) the subgraph induced by n,

its first and its second neighborhoods. That is:

Γ1,2(n) = G(n ∪ Γ (n)) ∪ Γ (Γ (n))

5.2 A General greedy scheme for local community

detection

Our method is based on a greedy and iterative algo-

rithm. We will denote C(n0) the resulting community

of the given node n0. The local community will start

with one node, n0. At each iteration the set of nodes

identified as members of C(n0) will be denoted D, and

the set of all neighbors of nodes in D that do not belong

to D will be denoted S (see Figure 2).

Fig. 2 A node n0 (in green), the members of its local com-
munity D and the neighbors of nodes in D: S

The algorithm takes as inputs n0, Γ1,2(n0) and the

parameter α. At each iteration, given D and S the

algorithm selects the best nodes Π∗ from S to enter D

to according to a given criterion function F . We mean

5 If α < 0.5, Theorem 1 does not hold anymore, then the
input of the algorithm will not be limited to the second neigh-
borhood, but the whole graph specially for alpha small.

6 P. Conde-Cespedes, B. Ngonmang and E. Viennet

by best nodes the nodes that will make it possible to

obtain a community of maximal size while respecting

the contraint (1) of an α−quasi-clique in order to

approach the solution of problem 1. The algorithm

stops when there is no possibility of improvement in

the size of the community (see algorithm 1).

Algorithm 1 General greedy scheme for local commu-

nity detection.

Require: A node n0, Γ1,2(n0) and a parameter α.
Ensure: A local α−quasi-clique community C(n0) contain-

ing n0.
1: Initialize D = {n0}, S = Γ (n0).
2: while It is possible to add nodes from S to D do
3: Select the best nodes Π∗ from S to enter D according

to a given selection criterion function F .
4: Update D, S.
5: end while
6: return C(n0) = D

Now, let us define explicitly the condition in the

while loop in algorithm 1, line 2. This condition is

true if it exits the possibility of improvement in the

size of the community, in other words, the possi-

bility to add at least one node from S to D, such

that the resulting community is an α−quasi-clique.

To state this condition we need to give some definitions.

Consider the graph in Figure 3. Suppose we are min-

ing for the maximal 0.6−quasi-clique of node 0. Suppose

that at a given iteration we obtain D = {0, 1, 2, 3} and

S = {4}. For the next iteration, if node 4 is added to D

all the nodes in the resulting community {0, 1, 2, 3, 4}
will verify the rule of an 0.6−quasi-clique, except node

0, because it will be connected to only 2 nodes out of

4, less than 60%.

Fig. 3 When mining for the maximal 0.6−quasi-clique of
node 0, if node 4 is added to D the resulting community will
not be an 0.6−quasi-clique as node 0 will not verify the rule
of an α−quasi-clique (1)

Certainly, given an α−quasi-clique D, if a new

node is added to D then the rule (1) would become

more strict to be satisfied, because every node must be

connected to more nodes in the resulting community.

In other words, increasing the size of the community

causes the rule of an α−quasi-clique to become more

strict. Indeed, the growth of the community is limited

by the internal degree of the existing nodes in D.

Therefore, before considering the addition of a new

node it is necessary to ensure that the already existing

nodes will still verify the rule after the addition. Let

us formalize all these concepts.

Given a node n, we call the internal degree of n the

number of internal connections of n to nodes in D and

we denote it din(n).

For example, in Figure 3, the internal degree of

nodes D = {0, 1, 2, 3}, are 2, 3, 3 and 2 respectively,

and the community size is 4. Since every node must

be connected to more than 60% of the other nodes,

adding a new node may cause nodes 0 and 3 to break

the rule because in a community of size 5 every node

must be connected to at least 3 nodes. So, the addition

of a new node is not possible unless the new node is

connected to nodes 0 and 3. These explanations lead

to the following theorem (see appendix for proof):

Theorem 2 Given a node n with internal degree

din(n) the maximum possible size of an α−quasi-

clique or α-consensus community it can belong to, de-

noted Dmax(n), is given by:

Dmax(n) =

⌈(
din(n)

α

)⌉
. (3)

Likewise, given an α−quasi-clique or α-consensus

community D the minimal internal degree a node in

D can have, denoted dmin is:

dmin =
⌊
α(|D| − 1)

⌋
+ 1. (4)

The notations dxe and bxc represent the ceiling and

the floor functions of a real number x respectively.

Now, let us suppose D is an α−quasi-clique com-

munity. We denote dmin = min
n∈D
{din(n)} the minimal

internal degree of all the nodes in D. If we want to add

nodes, while keeping an α−quasi-clique, the maximum

size of the resulting community must not exceed:

Dmax =

⌈(
dmin
α

)⌉
(5)

An efficient method for mining the Maximal α-quasi-clique-community of a given node in Complex Networks 7

Definition 2 A saturated node

Given a community D, a node n ∈ D is saturated if

din(n) = dmin or |D| = Dmax(n).

For the example in Figure 3, dmin = 2, Dmax = 4,

therefore, nodes 0 and 3 are saturated.

From theorem 2 and definition 2 we can state the

following corollary (proof is omitted):

Corollary 1 Given a community D, if there is a sat-

urated node n, the following equalities take place:

din(n) = dmin = dmin and Dmax(n) = Dmax = |D|.

On one hand, if no node is saturated it is possible

to choose any node from S to enter D as long as it

verifies the rule of an α−quasi-clique. On the other

hand, if the local community contains saturated nodes

the only possibility to increase its size is to choose a

node in S from the set of common neighbors of all

saturated nodes (so, their internal degree can increase).

However, if a node n is saturated and its degree is

equal to its internal degree (d(n) = din(n)) there is no

possibility of improvement because n has no neighbors

in S.

Henceforth, we will say that a node is supersatu-

rated if it is saturated and its degree is equal to its

internal degree. For example, in Figure 3, node 0 is

supersaturated. In this situation, there is no possibility

of improvement, so the algorithm must stop. Let ssat

be a boolean variable which is set to true if at least

one node in D is supersaturated and false otherwise.

Therefore, if ssat is true the algorithm must stop.

In the following, if a subset of nodes denoted

Π ∈ S is such that after being added to D all nodes

in the resulting community verify the constraint of

an α−quasi-clique (1), we will say that nodes in Π

are good candidates to enter D. If there are no good

candidates, the algorithm must stop.

At each iteration the algorithm will select the best

nodes from S to enter D according to a given criterion

function F (line 3 of algorithm 1). We will denote these

selected nodes Π∗. If this function returns the empty

set the algorithm must stop.

Now, let us go back to the condition in the while

loop in line 2 of algorithm 1. The condition must be

false if and only if the algorithm must stop. Therefore,

the condition in the while loop would be compound:

while (|S| > 0 and ssat = false and Π∗ 6= ∅)

In order for this condition to be verified for the first

iteration, ssat and Π∗ are initialized to ssat =false

Π∗ = {n0} in line 1 of algorithm 1.

The proposed method in this paper is based on the

general greedy scheme for local community detection. In

the next section, we will decribe the criterion function F

used in line 3 of algorithm 1. This function characterizes

our method.

5.3 The RANK-NUM-NEIGHS method

5.3.1 Introduction and motivation

In [19], we presented the RANK-GAIN+ (RG+)

algorithm. This algorithm is based on the general

greedy scheme described in Section 5.2 and its selection

criterion F is based on the gain.

Definition 3 Gain

For any node n in the neighborhood S of the local

community D and connected to `n nodes in D, the

gain resulting from the addition of n to D, denoted

gn, is given by:

gn = `n − α|D|. (6)

For any node n to respect the rule of an α−quasi-

clique, gn must be positive. The gain measures the

strenght of the connection between n and D. A high

value of gain contributes to increase the density of the

community.

In [19], we discussed about some shortcomings not

solved by the RG+ algorithm. Indeed, the gain is not

the most important variable when selecting a node to

enter D. At this point, let us remind the problem of the

maximal α−quasi-clique community (see equation (2)):

Given a node n0 in the graph, the purpose is to find

the biggest community containing n0 where each node

is connected to more than α% of the other nodes.

So, the purpose is to maximize the community

size, not directly the density, as long as all the nodes

verify the rule (1). By choosing a high value of α, the

verification of this rule will garantee a density higher

than α (see section 2 for details). The gain is certainly

important as it contributes strongly to the value of

the density, however, as mentionned in the previous

sections, a very dense small community lacks of interest

and interpretability. In other words, there is a trade-off

between the size and the density of a community.

8 P. Conde-Cespedes, B. Ngonmang and E. Viennet

Indeed, consider the gain the criterion to select nodes

can lead to sub-optimal solutions consisting in high

dense communities of very small size.

For instance, consider the graphs in figure 4. Let

us suppose we are looking for the maximal 0.55-quasi-

clique community of node 0 for graph a). The opti-

mal solution is Dopt = {0, 1, 2, 3, 4, 5} (nodes in red in

the graph on the left). At a given iteration, we have

D = {0, 1, 2} (as shown in the graph on the right).

Among all the candidates in S = {3, 4, 5, 6} for the

next iteration the only candidate with positive gain is

node 6. So, it will be chosen and the algorithm will stop

and return the suboptimal solution D = {0, 1, 2, 6}. A

similar problem would happen for the graph b) when

looking for the community of node 1. The optimal solu-

tion is a community of size 6 (nodes in red of the graph

on the left). However, the RG+ algorithm will return a

community of size 4 (nodes in red of the graph on the

right). Indeed, once nodes 1, 2, 3 and 4 have entered

the community, the algorithm will judge nodes 5 and 6

as bad candidates as their gains are null.

Fig. 4 a) RG+ will choose 6 as the best candidate to join
D. b) RG+ will return a local community of size 4 for node
1 (left) whereas the maximal α− consensus community is of
size 6 (right)

To overcome these shortcomings, we introduced

the RANK-NUM-NEIGHS (RNN) algorithm, the al-

gorithm we propose in this paper. The RNN algorithm

is also based on the general greedy scheme and it

distinguishes from the RG+ algorithm in the selection

criterion F .

The RNN method selection criterion is based on

the number of common neighbors with the local com-

munity. Indeed, when a node n is added to D the gain

of all of its neighbors in S will increase by (1 − α) for

the next iteration as stated in lemma 1 (see appendix

for the proof).

Lemma 1 Given a node n ∈ S if n is added to D the

gain of all its neighbors will increase by (1− α).

Besides, the more neighbors the selected nodes

have, the more possibilities there are to have good

candidates for the next iteration. Therefore, there

will be more possibilities to enlarge the community

and approach the optimal solution of the maximal

α−quasi-clique community of a given node problem

described in (1).

The RNN method considers the gain but in second

place. Certainly, the gain is certainly important as it

contributes strongly to the value of the density, how-

ever, as mentioned in the introduction, a very dense

small community lacks of interest and interpretability.

5.3.2 Description of the RNN method: the selection

criterion F

The selection criterion F used by the RANK-NUM-

NEIGHS (RNN) algorithm in the general greedy

scheme (see algorithm 1) has two main characteristics:

1. It prioritizes the number of common neighbors with

the local community over the gain when choosing a

new node (or more nodes) to enter the local com-

munity.
2. At each iteration either none, one node or a set of

nodes might enter the local community.

We call add nodes() this selection function. It is de-

scribed in algorithm 2. It takes as parameters the local

community D, its neighborhood S and the parameter

α. It returns a set of good nodes Π∗ from S to add to

D. It uses two functions:

1. Function rank by neighbors(): this function returns

a ranking of nodes in S according to their com-

mon neighbors with the community. It takes as

input parameter the induced subgraph by nodes

in S, denoted G(S). For example, consider the

graph in Figure 5, S = {3, 4, 5, 6}. The function

rank by neighbors will rank first nodes {3, 4, 5} be-

cause they have 2 neighbors in S and the second

place will be for node {6} since it has no neighbors

in S.
2. Function rank by gain(): given a set of nodes, this

function returns a ranking for all these nodes ac-

cording to their gain if added to D (Equation

(6)). For example, for the graph of Figure 5, D =

{0, 1, 2}, S = {3, 4, 5, 6} and α = 0.5. The function

rank by gain will rank first node {6} as its gain is

0.5 and the second rank will be for nodes {3, 4, 5}
as their gain is -0.5.

The Figure 6 shows an example of the calculation

of the outputs rank by neighbors() and rank by gain()

functions for α = 0.5. First, nodes are ranked accord-

ing to their number of neighbors in S (represented by

the green edges). This is the first criterion to select a

An efficient method for mining the Maximal α-quasi-clique-community of a given node in Complex Networks 9

Fig. 5 Illustration of the functions rank by neighbors() and
rank by gain() used by the add nodes function.

new node. Second, if ties, nodes are ranked according

to their gain, that is, the number of connections with

D (represented by the red edges). For the graph in the

figure, the function rank by neighbors() will rank node

3 first as it has 3 neighbors in S, next 1, 2 and 4 (two

connections), then 5 (1 connection) and finally 6 (0 con-

nections). Ties between nodes 1, 2 and 4 will be broken

by the rank by gain() function given in equation (6).

For the example, node 1 has the greatest gain followed

by nodes 2 and 4. Therefore, the algorithm will consider

the nodes in the following order: 3, 1, 2 and 4 (or 4 and

2 ties will be broken randomly), 5 and finally 6 (see the

table of Figure 6). When considering each node 4 situ-

ations can take place. These situations are explained in

algorithm 2 and schematized in Figure 7.

The function add nodes is described in algorithm 2.

First, the following variables are initialized (line 1 of

algorithm 2):

– RC: the number of remaining candidates, at the be-

gining there are as many candidates as nodes in S.
– Rank: the ranking of nodes in S obtained by the

rank by neighbors() function.
– r: the current rank of number neighbors, it is ini-

tialized to the highest value.
– Cr: the set of nodes whose rank is r.
– Gain: the ranking of nodes in Cr according to their

gain, calculated by the rank by gain() function.
– g: the current gain, initialized to the highest gain

found in the rankingGain.
– Cand, called the set of current candidates, is the set

of nodes in S with rank r and gain g.
– Π∗: the list of selected nodes to enter D. It can

contain no node, only one or more than one nodes.

Next, (line 2-40 of algorithm 2) as long as there are

still candidates (RC > 0) and a good set of nodes has

not been found yet the function will continue to search

for the best nodes. According to the values of current

rank r and current gain g, 4 situations can take place:

– Situation 1 (lines 3-12 of algorithm 2): g > 0, the

gain of n∗ is positive: If all nodes in D verify the

rule of an α−quasi-clique after the addition of n∗

(n∗ is a good candidate), then the function returns

Π∗ = {n∗}, otherwise n∗ is dropped from the list

of candidates Cand and RC decreases by one. This

process is repeated until either a good node has been

found or there are no more candidates in Cand.

Situations 2, 3 and 4 take place when g ≤ 0. In

this case n∗ can not be added alone to D because, it

does not verify the rule of an α−quasi-clique. In this

case, the function tests if it is possible to let it enter

simultaneously with all or some of its neighbors in S.

The number of connections n∗ will need is announced

in theorem 3 (see appendix for proof).

Theorem 3 Given an α−quasi-clique D, its neigh-

borhood S and a node n ∈ S with negative gain, to

obtain a positive gain the number of additional con-

nections that n needs, denoted x, is:

x =

⌊(
α|D| − `n
(1− α)

)⌋
+ 1 (7)

where `n in the number of links between n and D.
This means that n needs x additional connections, besides
`n to respect the rule of an α−quasi-clique in the resulting
community.

Given a node n ∈ S, let us denote S(n) the set

of its neighbors in S, that is, its common neighbors

with the community D. According to the value of x we

distinguish the following situations:

– Situation 2 (lines 16-17 of algorithm 2): g ≤ 0

and r < x, so any node n among the candidates Cr
has fewer neighbors than required to get a positive

gain. All the nodes in Cand and all nodes in Cr
will be in the same situation as they have the same

rank r. Therefore, no candidate in Cand is a good

candidate, Cand must be set to the empty set and

the number of remaining candidates RC decreased

by |Cr|.

– Situation 3 (lines 19-27 of algorithm 2): g ≤ 0

and r = x, so any node n among the candidates

Cr has exactly as many neighbors in S as required.

The function chooses one node n∗ from Cand and

tests if all nodes in the set {n∗ ∪ S(n∗)} are good

candidates. If that is the case, the function returns

Π∗ = {n∗ ∪ S(n∗)}. Otherwise n∗ is dropped from

Cand and the number of candidates RC decreases

by one. This process is repeated until either a good

set of nodes has been found or there are no more

candidates in Cand.

10 P. Conde-Cespedes, B. Ngonmang and E. Viennet

Fig. 6 Scheme of the RNN algorithm: the calculation of rank by neighbors() and rank by gain() functions for α = 0.5. First,
nodes are ranked according to their number of neighbors in S, represented by the green edges. Second, if ties, nodes are ranked
according to their gain, that is, the number of connections with D, represented by the red edges. For the graph in the figure,
the function rank by neighbors() will rank node 3 first as it has 3 neighbors in S, next 1, 2 and 4 (two connections), then 5 (1
connection) and finally 6 (0 connections). Ties between nodes 1, 2 and 4 will be broken by the rank by gain() function given in
equation (6). For the example, node 1 has the greatest gain followed by nodes 2 and 4. Therefore, the algorithm will consider
the nodes in the following order: 3, 1, 2 and 4 (or 4 and 2 ties will be broken randomly), 5 and finally 6.

– Situation 4 (lines 30-38 of algorithm 2): g ≤ 0 and

r > x, the function chooses one node n∗ randomly

from Cand and verifies if n∗ can enter D with x of

its neighbors. The set of chosen neighbors of n∗ is

denoted S(n∗)(x). The function chooses up to x

nodes from S(n∗) according to the following rule:

Rule 1: Nodes in S(n∗) with the highest ranks

are chosen first. If there are ties and more nodes

are needed, the function selects nodes with the

highest gain. If still more nodes are required

and there are ties in rank and gain they are

chosen randomly among all possible combina-

tions.

Different combinations are tested until either one

set Π = {n∗ ∪ S(n∗)(x)} composed of good nodes

has been found or all the possible combinations of

S(n∗)(x) nodes have been tested. Once one combi-

nation of good candidates has been found the func-

tion returns Π∗ = Π. Otherwise n∗ is dropped from

the list of candidates Cand and the number of candi-

dates RC decreases by one. A new node n∗ is chosen

randomly from Cand. This process is repeated until

either a good set of nodes has been found or there

are no more candidates in Cand.

Figure 7 shows an example for the 4 situations. Con-

sider D = {0, 1, 2} and α = 0.5:

– Situation 1: S = {3, 4, 5, 6}, the four nodes have

rank r = 0 (as they have 0 neighbors). Node 6 has

the highest and the only with positive gain g = 1.5,

so Cand = {6}. The algorithm will select n∗ = 6.

Since it is a good candidate the function will return

Π∗ = {6}.
– Situation 2: S = {3, 4, 5, 6}, RC = 4, Rank = {1 :

3, 4; 0 : 5, 6}, r = 1, Cr = {3, 4} and Cand = {3, 4}
(as {3, 4} have the highest rank). However, both

of them have a negative gain g = −0.5. To get

a positive gain they need x = 2 neighbors. Since

r < x then {3, 4} will be discarded from the set

of candidates, Cand will be set to the the empty

set and RC will decrease by 2. For the next itera-

tion the algorithm will skip to the seconde highest

rank and gain, so r = 0, Cr = {5, 6}, Cand = {6},
g = 0.5 > 0. In this second iteration situation 1

takes place. Since 6 is a good candidate the function

will return Π∗ = {6}.
– Situation 3: S = {3, 4, 5, 6}, Rank = {2 : 3, 4, 5; 0 :

6}, r = 2, Cr = {2, 3, 4}. The possible candidates

are Cand = {2, 3, 4}, but their gains are negative

g = −0.5. They need x = 2 neighbors to get a pos-

itive gain. They have exactly as many neighbors as

required. The function chooses one node n∗ of the

three randomly to test if it can be added to the

community with its neighbors. Since, they are good

candidates, the function will return Π∗ = {3, 4, 5}.

An efficient method for mining the Maximal α-quasi-clique-community of a given node in Complex Networks 11

– Situation 4: S = {3, 4, 5, 6, 7}, Rank = {3 : 3; 2 :

4, 5 1 : 7; 0 : 6}, r = 3, Cr = {3} and Cand =

{3}. Node 3 has a negative gain g = −0.5. It needs

x = 2 neighbors to get a positive gain and it has

3 (r > x). The algorithm will choose 2 out of the

3 according to rule 1 (based on the rank and on

the gain if necessary). The winner will be nodes 4

and 5. Then, the function will return Π∗ = {3, 4, 5}
because they are good nodes.

Fig. 7 The 4 situations of the function add nodes() of the
RANK-NUM-NEIGHS algorithm.

Finally, if the set of candidates is empty and no

solution has been found yet (lines 41-43 of algorithm

2), then the set of candidates Cand should be updated.

If Cand is empty (no more candidates with the current

gain), the functions skips to the next value of gain g.

If Cand is empty because there are no more candidates

with the current rank, the current rank r is updated

to the second highest rank and so on. Then, Cand is

updated as the set of nodes in S with rank r and gain

g.

After the end of the while loop, in line 45, if no

good nodes have been found and there are no more

candidates (RC = 0), then the function returns the

empty set.

In order to enhance the results, we added a post-

processing step to our approach. When looking for

the maximal α−quasi-clique community of a node n0
in a graph, the local communities of all its neighbors

are estimated as well, by the RNN algorithm. Among

all the communities of its neighbors that contain n0, if

the biggest one is larger than that of n0, then the local

community of n0 is set to this larger community.

Algorithm 2 The add nodes() function for the RANK-

NUM-NEIGHS algorithm.
Require: set D, set S, parameter α
Ensure: A set of good nodes Π∗ from S to enter D.

1: Calculate

– RC ← |S|, Rank ← rank by neighbors(S,G(S)),
– r (highest rank in Rank), Cr.
– Gain← rank by gain(D,Cr, G(D ∪ Cr), α)
– g (highest gain in Gain).
– Cand← set of nodes in Cr whose gain is g.
– Set Π∗ = {∅}.

2: while (RC > 0) do
3: if (g > 0) then
4: // SITUATION 1
5: while (Cand 6= {∅}) do
6: choose a node n∗ randomly from Cand.
7: if n∗ is a good candidate then
8: return Π∗ = {n∗}.
9: else

10: Drop n∗ from Cand and RC = RC − 1.
11: end if
12: end while
13: else
14: Calculate: x ←

⌊(
α|D|−`
(1−α)

)⌋
+ 1, where ` = (g +

α|D|).
15: if (x > r) then
16: // SITUATION 2
17: Set RC = RC − |Cr|, Cand = {∅}
18: else if (x = r) then
19: // SITUATION 3
20: while (Cand 6= {∅}) do
21: choose a node n∗ randomly from Cand.
22: if Π = {n∗ ∪ S(n∗)} are good candidates

then
23: return Π∗ = Π.
24: else
25: Drop n∗ from Cand and RC = RC−1.
26: end if
27: end while
28: else
29: // SITUATION 4
30: while (Cand 6= {∅}) do
31: choose a node n∗ randomly from Cand.
32: Set S(n∗)(x) ← Choose up to x nodes

from S(n∗) according to rule 1.
33: if Π = {n∗ ∪ S(n∗)(x)} are good candi-

dates then
34: return Π∗ = Π.
35: else
36: Drop n∗ from Cand and RC = RC−1.
37: end if
38: end while
39: end if
40: end if
41: if (|Cand|=0) then
42: Update r, g and the set of candidates Cand.
43: end if
44: end while
45: return Π∗

12 P. Conde-Cespedes, B. Ngonmang and E. Viennet

5.3.3 Complexity of the proposed method

Consider the general greedy scheme for local commu-

nity detection described in algorithm 1. The while

loop is the most time consuming operation. This loop

executes as long as it is possible to add nodes to the

local community. Each iteration of the loop depends

strongly on the selection criterion F . For the RNN

method, this is the add nodes function (see Algorithm

2).

The add nodes function calls two functions (see

algorithm 2, line 1): the rank by neighbors function

and the rank by gain function.

At the first iteration, the rank by neighbors func-

tion elaborates a ranking of the neighbors of the

starting node n0 based on the number of common

neighbors with n0. This operation takes as much time

as sorting d0 elements, where d0 is the degree of n0.

Depending on the sorting algorithm, this might take

either O(d0 log(d0)) or O(d20) time in the worst case.

The output of this function is contained in the variable

Rank.

Next, if r is the highest rank and Cr is the set

of nodes whose rank is r. The function rank by gain

makes a ranking of nodes in Cr based on the gain.

In the best case there is only one node in Cr and in

the worst case all the nodes have the same rank and

rank by gain makes a second ranking of d0 elements

again. The set of nodes with the highest gain g is

denoted Cand.

The operations in the while loop of the add nodes

function (lines 2 until the end) are less time consuming

than the two ranking functions as they consider

only a small subset of S, that is Cand. Furthermore,

according to the values of r, g and x just one of the

four operations takes place.

At the end of the first iteration, one or more

nodes have been added to the local community. D

and S must be updated in algorithm 1. At the second

iteration, the add nodes function is called with new

input parameters. The ranking Rank is not calculated

again for all the nodes in S but it is just updated with

the new neighbors of the new local community D.

According to theorem 1, the optimal solution

contains at most as many nodes as those contained in

the first and in the second neighborhood of node n0.

This means, that the rank by neighbors function will

make a sorting of at most d0 + |Γ (Γ (n0))| = |Γ1,2(n0)|.
As this is the most time consuming operation, the

complexity of the algorithm is determined by this

operation and its worst time complexity is the time

required to sort |Γ1,2(n0)| elements. Depending on

the data structure, this operation can perform in

O(|Γ1,2(n0)| log |Γ1,2(n0)|) or O(|Γ1,2(n0)|2) time in

the worst case. This will be the worst time complexity

of the while loop in algorithm 2.

Now, we have to consider the post-processing step

included described by the end of the last section.

This step imples to perform the sorting opera-

tions d0 times. This will lead to a complexity of

O(d0|Γ1,2(n0)| log |Γ1,2(n0)|) or O(d0|Γ1,2(n0)|2) in the

worst case.

Notice that this calculation is mostly pesimistic be-

cause real networks are mostly free-scale. Therefore,

most nodes have a low degree and the algorithm will

stop earlier. It is unlikely to get a local community of

size Γ1,2(n0) that is, a community which contains the

entire first and second neighborhood.

6 Evaluations

The RANK-NUM-NEIGHS method is evaluated

according to 3 criteria: the quality of the detected

communities, the execution time and the stability of

the algorithm. Quality refers to the community sizes.

Indeed, the maximal α−quasi-clique community of a

given node problem aims to detect α−quasi-cliques

of maximal size. Therefore, the bigger the output

communities are, the higher the quality of the method

is.

We compared our method to the QUICK and

the RLS-DLS methods described in Section 4. The

executable versions of both methods were kindly

provided by their authors. At the end of this Section,

we present a practical application on ”The Zachary

Karate Club network” (karate) [50].

The evaluations are made on real and artificial net-

works. Concerning the artificial networks, we generated

benchmark LFR graphs (see [31]) of sizes ranging from

1000 to 10000 nodes by increments of 1000. The input

An efficient method for mining the Maximal α-quasi-clique-community of a given node in Complex Networks 13

parameters are the same as those considered in [19]6.

The real networks are the same used in [19]:

– ”The Zachary Karate Club network” (karate) [50],

34 nodes and 78 edges.

– ”The College football network” (football) [26], 114

nodes and 613 edges.

– ”Books about US politics” (polbooks) [30], 104 nodes

and 441 edges.

– ”Political blogosphere” (polblogs) [2], 1490 nodes

and 16715 edges.

6.1 Sizes of the detected communities

The boxplots of the community sizes for real and arti-

ficial networks of 1000 nodes7 are shown in Figure 8.

For all the datasets we ran the RNN and the RLS-DLS

heuristics 10 times. For each dataset, the figure com-

pares the community sizes obtained by our algorithm,

RNN, to those obtained by the QUICK (QCK) and

by the RLS-DLS (RLS) methods. The horizontal axis

presents each method for different values of α, ranging

from 0.6 to 0.9.

R
N

N
−

0
.6

Q
C

K
−

0
.6

R
L

S
−

0
.6

R
N

N
−

0
.7

Q
C

K
−

0
.7

R
L

S
−

0
.7

R
N

N
−

0
.8

Q
C

K
−

0
.8

R
L

S
−

0
.8

R
N

N
−

0
.9

Q
C

K
−

0
.9

R
L

S
−

0
.9

1

2

3

4

5

6

karate

R
N

N
−

0
.6

Q
C

K
−

0
.6

R
L

S
−

0
.6

R
N

N
−

0
.7

Q
C

K
−

0
.7

R
L

S
−

0
.7

R
N

N
−

0
.8

Q
C

K
−

0
.8

R
L

S
−

0
.8

R
N

N
−

0
.9

Q
C

K
−

0
.9

R
L

S
−

0
.9

2

4

6

8

10

12

football

R
N

N
−

0
.6

Q
C

K
−

0
.6

R
L

S
−

0
.6

R
N

N
−

0
.7

Q
C

K
−

0
.7

R
L

S
−

0
.7

R
N

N
−

0
.8

Q
C

K
−

0
.8

R
L

S
−

0
.8

R
N

N
−

0
.9

Q
C

K
−

0
.9

R
L

S
−

0
.9

2

4

6

8

10

polbooks

R
N

N
−

0
.6

Q
C

K
−

0
.6

R
L

S
−

0
.6

R
N

N
−

0
.7

Q
C

K
−

0
.7

R
L

S
−

0
.7

R
N

N
−

0
.8

Q
C

K
−

0
.8

R
L

S
−

0
.8

R
N

N
−

0
.9

Q
C

K
−

0
.9

R
L

S
−

0
.9

5

10

15

20

25

30

35

LFR, Size:1000

Community sizes vs alpha for real and artificial networks

Method

RNN QUICK RLS−DLS

Fig. 8 Sizes for artificial and real networks, comparison with
the global QUICK and RLS-DLS methods

Concerning the real networks, clearly the results of

our method are at least as good as those of the other

two methods. Although, the QUICK method seems to

give smaller communities for α = 0.6 or α = 0.7 than

the other two methods, for values of α closer to 1 the

distributions of sizes look quite similar for the three

6 The average degree is 20, the maximum degree 50, the
exponent of the degree distribution is -2 and that of the com-
munity size distribution is -1. We chose three values of mixing
parameter λ, 0.10, 0.20 and 0.30. The results presented in this
paper are those for λ = 0.10 to evaluate size, density and sta-
bility. The results have nearly the same behavior for the other
values of mixing parameter.
7 The results obtained for other network sizes have nearly

the same behavour.

methods.

Concerning the LFR networks in Figure 8, clearly

our method and the RLS-DLS method give better re-

sults than QUICK. Indeed, QUICK does not guarantee

that each node will be assigned to the largest clique it

belongs to as mentioned in Section 4. Besides that, it is

very slow in comparison to the other two methods (as

we will mention in Section 6.3). For instance, in Fig-

ure 8, the results for the LFR networks for α = 0.6 are

missing because the algorithm was still running afer 24

hours of execution. Furthermore, we could not obtain

the results for the polblogs network (1490 nodes and

16715 edges) for a high value of α = 0.8 as the output

file consumed more than 782Gb in stockage and was

still running. Certainly, the output of this method is a

list of all the existing α-quasi-cliques of a network for a

given α, which is so space-consuming.

6.2 Stability of the algorithm

We compared the stability of the RANK-NUM-

NEIGHS algorithm with that of the RLS-DLS algo-

rithm on artificial networks of sizes ranging from 1000

to 10000 (The QUICK method is deterministic). We

present in this paper the results for networks of 1000

nodes only (the results for the other sizes are quite sim-

ilar). We executed both algorithms for values of the

parameter α ranging from 0.5 to 0.9. Concerning the

RLS-DLS method, we executed this heuristic 10 times.

Concerning the RNN heuristic, for every node n of each

graph we made 10 iterations of the algorithm. So, for

both methods, we obtained 10 local communities for

each node. Let us denote C(n)i the local community

of the node n obtained at the ith iteration. Then, the

Jaccard index for these 10 sets, denoted J(n), is given

by the following formula:

J(n) =
|
⋂10
i=1 C(n)i|

|
⋃10
i=1 C(n)i|

(8)

Remark that J(n) ranges from 0 to 1 and it is equal

to 1 if the algorithm is 100% stable. J(n) = 1 would

signify that for 10 executions the algorithm returned

identical results. The Figure 9 shows the frequency at

which we obtained critical values of the Jaccard index

for both methods.

Concerning our method, we remark from Figure 9

that more than 80% of times we obtained a Jaccard

index equal to 1. This means that on average for more

of 80% of the nodes the algorithm detected the same

resulting community after 10 iterations. The remaining

14 P. Conde-Cespedes, B. Ngonmang and E. Viennet

Fig. 9 Stability for artificial LFR graphs.

20% of times presented a lot of variability. In contrast,

for the RLS-DLS method, the value 1 is obtained

in less than 40% of times (except for α = 0.5) and

this percentage decreases with increasing α. However,

about 20% of times the Jaccard index is smaller than

0.5. This emplies that about half of the times the

Jaccard index is bigger or equal to 0.5 but smaller

than 1. This lack of stability can be explained by the

fact that the RLS-DLS method includes a remove step

at each iteration. Certainly, even if a node has already

joined the community at a given iteration later it can

be removed. Whereas in the RNN method, once a

node joined the community it will stay until the end.

However, we have to mention that although the

RLS-DLS method might provide different results at

each iteration, in most of the cases they are of the same

good quality. Indeed, we mentioned in Section 3 that

the maximal α−quasi-clique community of a given node

problem does not have a unique solution. This means

that the same node can belong to different α−quasi-
clique communities of the same maximal size. Then

RLS-DLS will give a choice. This can be either a dis-

advantage or advantage.

6.3 Execution time

We executed the RANK-NUM-NEIGHS algorithm on

artificial networks of sizes ranging from 1000 to 10000

(see [19] for more details). The Figure 10 shows the

execution time in seconds for each entire network.

The Figure 10 shows that the execution time of the

algorithm is quite stable. The execution time seems to

increase smoothly with the network size. One reason

that explains the rapidity of the RNN method is that at

each iteration it is possible to add more than one node,

so the nodes become saturated faster than just adding

one node per iteration. We ran the RNN algorithm on

bigger graphs. The results are shown in Table 1.

Fig. 10 RNN method: execution time to detect the local
community of all nodes of every artificial LFR graph.

Table 1 Time for big graphs in seconds

Size α = 0.5 α = 0.7 α = 0.9
100000 269 223 192
500000 1345 1130 978

Fig. 11 Comparison of the execution time RNN method ver-
sus RLS-DLS method.

We do not present the comparison between our

method and the QUICK method as this last one took

more than one day for a graph of 9000 nodes. We also

remarked that it was very slow for the polblogs network

of 1490 nodes and 16715 edges. We compared the ex-

ecution time of our method to that of the RLS-DLS

method for a LFR network of size 1000. The results are

presented in Figure 11

By looking the Figure 11 we remark that the RLS-

DLS method is much slower than the RNN method and

this difference increases with decreasing α. For α = 0.8

the execution time is about 30 seconds and for α = 0.9

about 20 seconds for the RLS-DLS method.

An efficient method for mining the Maximal α-quasi-clique-community of a given node in Complex Networks 15

6.4 Practical application on a real social network

Analysis of quasi-cliques have been proven to be use-

ful in many problems (see for example [37], [1], [44]).

Among examples in big data applications we can men-

tion:

– Consider a telecommunication network, where each

node represents a person and there is an edge be-

tween two nodes if and only if they exchanged a

phone call. An application in anomaly detection

is finding sets of vertices that are almost cliques.

Large sets of such vertices are contradicting to the

average human habits: who talks to say 50 people

who all talk among each other as well?. According

to [3]: ”Detecting those nodes whose neighbors are

very well connected (near-cliques) or not connected

(stars) turn out to be strange: in most social net-

works, friends of friends are often friends, but either

extreme (clique or star) is suspicious”.

– In bioinformatics, many problems have been mod-

eled using cliques. For instance, the problem of clus-

tering gene expression data is usually modeled as

graph decomposition problem into disjoint cliques

(see [9] and [46]).

– Another application in biology is the clustering of

protein-protein interaction (PPI) networks to detect

functional groups. Researchers in biology attempt

to understand cellular organization and function by

analyzing these PPI networks. As discussed in [52]

recently, experimental techniques have generated a

large amount of protein-protein interaction (PPI)

data.

– In social network analysis, as pointed out by [49],

on real data the communities are far away from be-

ing highly dense. Therefore, the detection of quasi-

clique can be much more appropiated than detection

complete cliques.

Furthermore, the mining of subgraphs of high

density lies at the core of large scale data mining (the

interested reader can see [6]).

In this section we present a practical example of our

method in a well-known social network of friendships,

the Zachary karate club studied by [50]. A social net-

work between 34 members of a karate club at a US

university in the 1970s shown in Figure 12. The club

hired a karate instructor, Mr. Hi (node 1). There was

a conflict between Mr. Hi and the club president, John

A. (node 34) over the price of the lessons. The entire

club became divided over this issue during the decision

meetings before spliting completely into two parts. Mr.

Hi was fired and created another club. About half of

the active members joined him whereas the other half

supported John. Not all individuals in the network were

solidly members of one faction or the other. Some vacil-

lated between the two ideological positions, and others

were simply satisfied not to take sides. These individu-

als are key nodes in the network, in that it was through

them that information was likely to pass from one fac-

tion to the other.

An interesting application of our method would be to

detect the local community of Mr. Hi (node 1) and the

community of John A (node 34) in order to detect the

individuals strongly connected to those key nodes.

The Figure 12 shows the local communities of nodes 1

and 34 after applying the RNN method for α = 0.8 and

α = 0.9.

Fig. 12 Local communities of nodes 1 and 34 of the karate
club network.

Concerning node 1, its community contains 6 mem-

bers. According to [50] all those members strongly sup-

ported the instructor, except node 14 whose affiliation

was weak. Concerning node 34 we found 2 optimal so-

lutions of size 4, both of them are complete cliques as

α is high. All these members were strongly connected

to the administrator, except node 9 (present in one of

the optimal solutions). indeed node 9 is also connected

to Mr. Hi (node 1) and was a weak supporter of John

(node 34).

7 Bound on the optimal solution

In order to evaluate the quality we calculated an

upper bound on the optimal solution of the maximal

α−quasi-clique community of a given node problem

stated in Section 3.

Consider a node n0 with degree d(n0), then the size

of its maximal α−quasi-clique community can not ex-

ceed the following quantity, denoted B0(n) (the proof

16 P. Conde-Cespedes, B. Ngonmang and E. Viennet

is similar to that of theorem 2, taking d(n0) instead of

din):

B0(n0) =

⌈(
d(n0)

α

)⌉
. (9)

B0(n0) constitutes an upper bound for the optimal

solution of our problem. This bound is satisfied if and

only if all the neighbors of n0 belong to its local com-

munity. That means when n0 is saturated. The bound

B0(.) can be reduced if we consider that the optimal

solution contains at least two nodes (for any α), that

is n0 and at least one of its neighbors. Then, another

bound for the optimal solution will be:

B1(n0) = min

(
max

n∈Γ (n0)
B0(n), B0(n0)

)
. (10)

Therefore, the optimal solution, denoted C∗(n0), is

bounded by:

|C∗(n0)| ≤ B1(n0) ≤ B0(n0).

Now, let us consider the node 0 in Figure 13 and

α = 0.5, we have B0(0) = 8 and B1(0) = 6, therefore,

|C∗(0)| ≤ 6. However, this bound is satisfied if and only

if exactly three of the neighbors of node 0 are in C∗(0).

We remark that nodes 3 and 4 can not belong to a com-

munity of size 6. Since their degrees are worth 1 then

B0(3) = B0(4) = 2. We can deduce that this bound

can not be reached. Therefore, there are only two pos-

sibilities: either nodes 3 and 4 do not belong to for the

optimal solution or at least one of them belongs to it. In

the first case, the community size of the optimal solu-

tion is at most 4 and in the second case the community

size of the optimal solution is at most 2. In conclusion,

the optimal solution is bounded by 4, we denote this

new bound is B2 and we have:

|C∗(n0)| ≤ B2(n0) ≤ B1(n0) ≤ B0(n0).

Fig. 13 Example for the calculation of the upper bound.

By looking the Figure 13 we can easily deduce that

the optimal solution is of size 4: C(0)∗ = {0, 1, 2, 5}.

We can repeat this operation iteratively to obtain

a smaller upper bound. Bound B2 is useful especially

for nodes that have a high degree. For example,

consider the node that represents the instructor in the

Zachary Karate Club network [50] (node 1). We obtain

B0(1) = 32, B1(1) = 20 and B2(1) = 10. The solution

we found with the RANK-NUM-NEIGHS is of size 8.

We calculated the upper bound B2 for all the nodes

of the 4 real networks. The Figure 14 shows the his-

togram of the difference between the upper bound B2

and the results found by the RNN algorithm.

karate α = 0.7

Difference

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

karate α = 0.9

Difference

0 2 4 6 8 10

0
.0

0
.4

0
.8

football α = 0.7

Difference

0 2 4 6 8 10

0
.0

0
0
.1

0
0
.2

0
0
.3

0 football α = 0.9

Difference

0 2 4 6 8 10

0
.0

0
0
.1

0
0
.2

0
0
.3

0

polbooks α = 0.7

Difference

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

polbooks α = 0.9

Difference

0 2 4 6 8 10

0
.0

0
.2

0
.4

polblogs α = 0.7

Difference

0 10 20 30 40 50

0
.0

0
0
.0

4
0
.0

8

polblogs α = 0.9

Difference

0 10 20 30 40 50

0
.0

0
0
.0

4
0
.0

8

Histogram of the difference

Fig. 14 Histogram of the difference between the upper
bound B2 and the results of our algorithm for real networks.

The Figure 14 shows that the difference is concen-

trated in small values for 3 networks: karate, polbooks

and polblogs because the frequency is decreasing. Es-

pecially for the karate dataset, we reached the optimal

solution for all but two nodes. A value of the difference

equal to zero means that our algorithm reached the op-

timal solution. That is the case for most nodes of the

three networks. Concerning the network football the

difference is rarely null. Indeed, this network contains

mainly complete cliques, so the nodes in the communi-

ties are not saturated. B2 constitutes an upper bound,

and it is satisfied if at least one node in the community

is saturated.

8 Conclusions and perspectives

In this paper we tackled what we called the maximal

α−quasi-clique community of a given node problem.

In order to approach the solution of this problem, we

proposed a community detection method that has two

main characteristics. First, the resulting communities

are α-quasi-cliques, very dense communities. Second, it

An efficient method for mining the Maximal α-quasi-clique-community of a given node in Complex Networks 17

is a local community detection method. Indeed, instead

of partitioning the entire network our method detects

the community of a given node of interest. We showed

that this approach can be useful when we are interested

in some particular nodes in the network or when we

do not have acces to the whole network data. We

showed that our method, called RANK-NUM-NEIGHS

(RNN), is scalable. To the best of our knowledge we

are the first to address the maximal α-quasi-clique

problem from a local-community point of view.

Some perspectives to this work can be taking into

account the attributes of nodes (for example, following

ideas from [22]). This problem can also be the building

block of more complex applications where the internal

density of community plays an important role. For ex-

ample, in friend recommendation, the missing links of

an α-quasi-clique community can be recommended. In

churn prediction, the communities can better model the

notion of the closest friends as studied in [40].

APPENDIX

Proof that an α−quasi-clique in the sens of definition

1 has a density greater than α

Proof. Let C be an α−quasi-clique in the sens of defi-

nition 1. Then, every node n ∈ C is connected to more

than α(|C| − 1) nodes. Therefore, e[C], the number of

edges induced by C verifies:

2e[C] > |C|α(|C| − 1).

Then, the edge density δ(C) of C verifies δ(C) =
e[C]

|C|(|C|−1)
2

> α

Proof of theorem 1

Proof. Given an α−quasi-clique C, for any two distinct

nodes u, v ∈ C, either u and v are directly connected

or not. Let us suppose they are not connected. For

α ≥ 0.5, according to the definition 1, |Γ (u)| > |C|−1
2

and |Γ (v)| > |C|−1
2 . Since |Γ (u) ∪ Γ (v)| ≤ |C|, then

Γ (u) ∩ Γ (v) 6= ∅ and u and v have at least one com-

mon neighbor. Therefore, the distance between any two

distinct nodes is at most 2.

Proof of lemma 1

Proof. Let us suppose that at iteration i the node n is

added to D. Let us denote m a neighbor of n, such that

m ∈ S, at iteration i the gain of m is:

gim = lm − α(|D| − 1)

The gain of m at iteration i+ 1, that is once n ∈ D
will be:

gI+1
m = lm + 1− α|D|

So, the gain of m increases by:

gI+1
m − gim = (1− α)

Therefore the gain of all the neighbors of n will in-

crease by (1− α)

Proof of theorem 2

Proof. For any α-consensus community D, any node

n ∈ D with internal degree din(n) respects the majority

rule:

din(n) > α(|D| − 1)⇐⇒ din(n)

α
+ 1 > |D|

we are interested in the maximum possible integer

Dmax(n) that respects this condition. There are two

possibilities:

Dmax(n) =


din(n)
α If

(
din(n)
α + 1

)
is integer.⌊(

din(n)
α

)⌋
+ 1 otherwise.

(11)

Expression (11) is equivalent to:

Dmax(n) =

⌈(
din(n)

α

)⌉
Analogously, given an α-consensus community D

the minimal internal degree a node in D can have, de-

noted dmin verifies:

dmin > α(|D| − 1)

since dmin is the minimum possible integer that re-

spects this condition. Two situations can take place:

dmin =

{
α(|D| − 1) + 1 If α(|D| − 1) is integer.⌈
α(|D| − 1)

⌉
otherwise.

(12)

which is the same as

dmin =
⌊
α(|D| − 1)

⌋
+ 1

18 P. Conde-Cespedes, B. Ngonmang and E. Viennet

Proof of theorem 3

Proof. Given a node n connected by `n links to an α-

consensus community D, if its gain is negative, it will

need x more connections to D such as:

`n + x > α(|D|+ x)⇔ x >
α|D| − `n

1− α
since x is the minimum possible integer that respects

this condition. Two situations can take place:

x =


(
α|D|−`n

1−α + 1
)

If
(
α|D|−`n

1−α

)
is integer.⌈

α|D|−`n
1−α

⌉
otherwise.

(13)

which is the equivalent to:

x =

⌊(
α|D| − `n
(1− α)

)⌋
+ 1.

Acknowledgment

This work is supported by REQUEST project.

References

1. Abello, J., Resende, M.G.C., Sudarsky, S.: Massive quasi-
clique detection. In: Proceedings of the 5th Latin Amer-
ican Symposium on Theoretical Informatics, LATIN ’02,
pp. 598–612. Springer-Verlag, London, UK, UK (2002)

2. Adamic, L.A., Glance, N.: The political blogosphere and
the 2004 u.s. election. In: Proceedings of the WWW-
2005 Workshop on the Weblogging Ecosystem, pp. 36–43.
ACM, NY, USA (2005)

3. Akoglu, L., Mcglohon, M., Faloutsos, C.: Anomaly de-
tection in large graphs. In: In CMU-CS-09-173 Technical
Report (2009)

4. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding
dense subgraphs. Discrete Appl. Math. 121(1-3), 15–
26 (2002). DOI 10.1016/S0166-218X(01)00243-8. URL
http://dx.doi.org/10.1016/S0166-218X(01)00243-8

5. Bagrow, J.P.: Evaluating local community methods in
networks. In: Journal of Statistical Mechanics, p. 05001
(2008)

6. Bahmani, B., Kumar, R., Vassilvitskii, S.:
Densest subgraph in streaming and mapre-
duce. CoRR abs/1201.6567 (2012). URL
http://arxiv.org/abs/1201.6567

7. Battiti, R., Mascia, F.: Reactive local search for maxi-
mum clique: A new implementation. Tech. Rep. DIT-
07-018, Informatica e Telecomunicazioni, University of
Trento, Trento, Italy (2007)

8. Battiti, R., Protasi, M.: Reactive local search for the max-
imum clique problem 29(4), 610 (2001)

9. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene
expression patterns

10. Blondel, V.D., Guillaume, J., Lambiotte, R., Lefebvre,
E.: Fast unfolding of communities in large networks. In:
Journal of Statistical Mechanics: Theory and Experiment
(2008)

11. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.:
The maximum clique problem. In: Handbook of Combi-
natorial Optimization, pp. 1–74. Kluwer Academic Pub-
lishers (1999)

12. Brunato, M., Hoos, H.H., Battiti, R.: On effectively find-
ing maximal quasi-cliques in graphs. In: V. Maniezzo,
R. Battiti, J.P. Watson (eds.) LION, Lecture Notes in
Computer Science, vol. 5313, pp. 41–55. Springer (2007)

13. Campigotto, R., Conde-Céspedes, P., Guillaume, J.:
A generalized and adaptive method for community
detection. CoRR abs/1406.2518 (2014). URL
http://arxiv.org/abs/1406.2518

14. Chen, J., Saad, Y.: Dense subgraph extraction with ap-
plication to community detection. IEEE Transactions
on Knowledge and Data Engineering 24(7), 1216–1230
(2012)

15. Chen, J., Zaiane, O.R., Goebel, R.: Local communities
identification in social networks. In: ASONAM, pp. 237–
242 (2009)

16. Clauset, A.: Finding local community structure in net-
works. In: Physical Review, vol. 72, p. 026132 (2005)

17. Conde-Céspedes, P., Marcotorchino, J., Viennet, E.:
Comparison of linear modularization criteria using the
relational formalism, an approach to easily identify res-
olution limit. Revue des Nouvelles Technologies de
l’Information Extraction et Gestion des Connais-
sances, RNTI-E-28, 203–214 (2015)

18. Conde-Céspedes, P., Marcotorchino, J., Viennet, E.:
Comparison of linear modularization criteria using the
relational formalism, an approach to easily identify reso-
lution limit. Advances in Knowledge Discovery and Man-
agement (AKDM-6) pp. 101–120 (2017)

19. Conde-Céspedes, P., Ngonmang, B., Viennet, E.: Ap-
proximation of the maximal α-consensus local commu-
nity detection problem in complex networks. In: IEEE
SITIS 2015, Complex Networks and their Applications.
Bangkok, Thailand (2015)

20. Condorcet, C.A.M.d.: Essai sur l’application de l’analyse
à la probabilité des décisions rendues à la pluralité des
voix. Journal of Mathematical Sociology 1(1), 113–120
(1785)

21. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search
of communities in large graphs. In: Proceedings of the
2014 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’14, pp. 991–1002. ACM, New
York, NY, USA (2014)

22. Dang, T.A., Viennet, E.: Community detection based on
structural and attribute similarities. In: International
Conference on Digital Society (ICDS), pp. 7–14 (2012)

23. Dang, T.A., Viennet, E.: Collaborative filtering in social
networks: A community-based approach. In: IEEE Com-
ManTel 2013, Int. Conf. on Computing, Management and
Telecommunications (2013)

24. Fortunato, S.: Community detection in graphs. In:
Physics Reports, vol. 486, pp. 75–174 (2010)

25. Fortunato, S., Barthelemy, M.: Resolution limit in com-
munity detection. In: Proceedings of the National
Academy of Sciences of the United States of America
(2006)

26. Girvan, M., Newman, M.E.J.: Community structure in
social and biological networks. Proceedings of the Na-
tional Academy of Sciences of the United States of Amer-
ica 99(12), 7821–7826 (2002)

An efficient method for mining the Maximal α-quasi-clique-community of a given node in Complex Networks 19

27. Harary, F., Ross, I.C.: A procedure for clique detection
using the group matrix. Sociometry 20, 205–215 (1957)

28. Karp, R.M.: Reducibility among combinatorial problems.
In: R.E. Miller, J.W. Thatcher (eds.) Complexity of Com-
puter Computations, The IBM Research Symposia Se-
ries, pp. 85–103. Plenum Press, New York (1972)

29. Komusiewicz, C.: Multivariate algorithmics for finding
cohesive subnetworks. Algorithms 9(1) (2016)

30. Krebs, V.: Books about US politics (2004). URL
http://www.orgnet.com/

31. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark
graphs for testing community detection algorithms. Phys.
Rev. E 78(4) (2008)

32. Lee, V.E., Ruan, N., Jin, R., Aggarwal, C.C.: A sur-
vey of algorithms for dense subgraph discovery. In: C.C.
Aggarwal, H. Wang (eds.) Managing and Mining Graph
Data, Advances in Database Systems, vol. 40, pp. 303–
336. Springer (2010)

33. Liang, R., Hua, J., Wang, X.: Vcd: A network visual-
ization tool based on community detection. In: Control,
Automation and Systems (ICCAS), 2012 12th Interna-
tional Conference on, pp. 1221–1226 (2012)

34. Liu, G., Wong, L.: Effective pruning techniques for
mining quasi-cliques. In: W. Daelemans, B. Goethals,
K. Morik (eds.) Machine Learning and Knowledge Dis-
covery in Databases, Lecture Notes in Computer Science,
vol. 5212, pp. 33–49. Springer Berlin Heidelberg (2008)

35. Luo, F., Wang, J.Z., Promislow, E.: Exploring local com-
munity structure in large networks. In: WI’06., pp. 233–
239 (2006)

36. Marcotorchino, F., Michaud, P.: Optimisation en Analyse
ordinale des données. Masson, Paris (1979)

37. Matsuda, H., Ishihara, T., Hashimoto, A.: Classifying
molecular sequences using a linkage graph with their pair-
wise similarities. Theoretical Computer Science 210(2),
305 – 325 (1999)

38. Newman, M., Girvan, M.: Finding and evaluating com-
munity structure in networks. Physical Review E. 69(2)
(2004)

39. Ngonmang, B., Tchuente, M., Viennet, E.: Local
communities identification in social networks. Par-
allel Processing Letters 22(1) (2012). DOI
10.1142/S012962641240004X

40. Ngonmang, B., Viennet, E., Tchuente, M.: Churn predic-
tion in a real online social network using local commu-
nity analysis. In: International Conference on Advances
in Social Networks Analysis and Mining, ASONAM 2012,
Istanbul, Turkey, 26-29 August 2012, pp. 282–288 (2012)

41. Owsiński, J., Zadrożny, S.: Clustering for ordinal data: a
linear programming formulation. Control and Cybernet-
ics 15(2), 183–193 (1986)

42. Pattillo, J., Veremyev, A., Butenko, S., Boginski, V.: On
the maximum quasi-clique problem. Discrete Applied
Mathematics 161, 244 – 257 (2013)

43. Pattillo, J., Youssef, N., Butenko, S.: On clique relax-
ation models in network analysis. European Journal of
Operational Research 226(1), 9–18 (2013)

44. Pei, J., Jiang, D., Zhang, A.: On mining cross-graph
quasi-cliques. In: Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discov-
ery in Data Mining, KDD ’05, pp. 228–238. ACM, New
York, NY, USA (2005)

45. Pullan, W.J., Hoos, H.H.: Dynamic local search for the
maximum clique problem. J. Artif. Intell. Res. (JAIR)
25, 159–185 (2006)

46. Tanay, A., Sharan, R., Shamir, R.: Discovering statisti-
cally significant biclusters in gene expression data. In: In
Proceedings of ISMB 2002, pp. 136–144 (2002)

47. Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., Tsiarli,
M.: Denser than the densest subgraph: Extracting opti-
mal quasi-cliques with quality guarantees. In: Proceed-
ings of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’13, pp.
104–112. ACM, New York, NY, USA (2013)

48. Wu, Q., Hao, J.K.: A review on algorithms for maximum
clique problems. European Journal of Operational Re-
search 242(3), 693–709 (2015)

49. Yang, J., Leskovec, J.: Overlapping communities ex-
plain core-periphery organization of networks. Tech-
nical report, Stanford University (2014). URL
http://ilpubs.stanford.edu:8090/1103/

50. Zachary, W.W.: An information flow model for conflict
and fission in small groups. Journal of Anthropological
Research (1977)

51. Zahn, C.: Approximating symmetric relations by equiva-
lence relations. SIAM Journal on Applied Mathematics
12, 840–847 (1964)

52. Zhang, Y., Lin, H., Yang, Z., Wang, J.: Construction
of dynamic probabilistic protein interaction networks
for protein complex identification. BMC Bioinformatics
17, 186 (2016). DOI 10.1186/s12859-016-1054-1. URL
http://dx.doi.org/10.1186/s12859-016-1054-1

