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Abstract—The problem of community detection has received
great attention by the complex networks researchers in the
last decades. Although the notion of community does not
actually have a unanimous accepted definition, it is generally
admitted that it consists in a set of densely connected nodes.
Moreover, density measures the strength of the relationships
in the community. The need of these well connected and dense
communities has led to the notion of a—consensus community.
An a—consensus community, is a group of nodes where each
member is connected to more than a proportion « of the other
nodes. An ov—consensus community is maximal if and only if
adding a new node to the set breaks the rule. Consequently,
an a—consensus community has a density greater than o.
Existing methods for mining cv—consensus communities gen-
erally assume that the network is entirely known and they try
to detect all such consensus communities. In some cases, the
network can be so large that each node can only have local
information or one can be only interested in the a—consensus
set of a particular node in the network. In this paper, we
propose an efficient algorithm based on local optimizations to
approximate the maximal o—consensus local community of a
given node. The proposed method is evaluated experimentally
on real and artificial complex networks in terms of quality,
execution time and stability. It provides better results than the
existing methods.

1. Introduction

Community detection in social networks has gained
considerable attention in social network analysis see [1].
Although the notion of community does not actually have
a unanimous accepted definition, it is generally admitted
that it consists of a set where each node shares many
connections with the others. Therefore, a community must
contain densely connected nodes. Moreover, density plays
an important role because it measures the strength of the
relationships in the community. The need of these well
connected and dense communities has led to the notion of
a-consensus community. An q-consensus community, is a
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group of nodes where each member is connected to more
than a proportion « of the other nodes, we call this rule
the majority rule. An a- consensus community is maximal
if and only if adding a new node to the set breaks the rule.
Consequently, an a-consensus community has a density
greater than «.

Mining all the maximal a-consensus sets of a network
is known to be NP-Complete [2] and has received a
great attention in the literature. Efficient exact methods
or approximations to solve it are available. However, all
these methods generally assume that the network is entirely
known and they try to find all such consensus communities.

In some cases, the network can be so large that one
can only have local information about some nodes or one
can be only interested in the consensus set of a particular
node in the network. In this paper, we present a novel local
method that uses information on the neighborhood of a
node to approach its maximal a-consensus community. The
proposed method is evaluated experimentally on real and
computer generated complex networks in terms of quality,
execution time and stability. It provides better results than
the existing ones.

This paper is organised as follows: section 2 presents
useful definitions and notations. Section 3 formalises the
problem using previously defined notations. Section 4 gives
an overview of related works. section 5 draws our solutions
to this problem. In section 6 the proposed solutions are
evaluated and the results are discussed. Finally, section 7
draws some conclusions and perspectives.

2. Useful definitions and notations

A social network can be represented by a graph
G = (V,E), where V is the set of vertices or nodes,
and FE is the set of edges or links, formed by pairs of
vertices. The two nodes u and v are the end vertices of the
edge e = (u,v). If the order of end vertices matters in an
edge, then the graph is said to be directed otherwise, it is
undirected. The neighborhood I'(u) of a node wu, is the set



of nodes v such that (u,v) € E. The degree of a node u is
the number of its neighbours or the cardinality of T'(u), i.e.
degree(u) = |I'(u)|. The degree of node u will be denoted
by d(u). Given this model, all graph theoretic tools can be
reused in network analysis.

Given a community-detection method, if it starts from
a given node and uses only local information the resulting
community is called local community. The detected local
community of a node ng will be denoted C(ng). If the
detection method is iterative, at any iteration the following
notation we denote D: set of nodes identified as members
of C(ng) and S: set of all neighbors of nodes in D that do
not belong to D.

3. Problem formulation

The problem, this paper tries to tackle, can be
summarized as follows:

”Given a node ng of a graph G(V, E') and a parameter «
(0 < a < 1), the purpose is to find the biggest a—consensus
community C(ng) containing ng”.
Mathematically, this problem can be formalized as follows:

maximize |C|
c

subject to ng € C (1)
and IT(n;) NC| > a(]C| —1),Vn; € C.

Notice that an av—consensus community has a density
greater than a.

4. Related works

We considered only existing methods that garantee that
the resulting communities are o-conscensus: !

4.1. The QUICK method

The QUICK method [8] was designed to efficiently
extract all the maximal a—cliques of a given network. This
algorithm uses a depth first search method to explore the
search space: starting with a node ng, it builds all the «
cliques of increasing sizes that contain ng. At each following
step, it moves to the next unexplored node and builds a-
cliques that do not contain already explored nodes. Because
the search space is exponential on the number of nodes,
some pruning techniques are used. They are based on the
degrees of the nodes and the diameters of the constructed
a—cliques. Despite the proposed pruning techniques, this
method is not suitable for very large graphs and it does
not guarantee that each node will be assigned to the largest
clique it belongs to.

1. A problem very similar to the one studied in this paper is local
community detection as describe in some existing works [3], [4], [5],
[6] and [7]. However, the methods described in those previous works
do not constrain the resulting communities to respect the a-conscensus
rule. Therefore, they do not address the same problem and they are not
considered in this paper for comparisons.

4.2. The Louvain method

The Louvain’s algorithm [9] is one of the fastest
methods for global community detection in large networks.
A global method decomposes the whole network into
disjoint communities. That is, it returns a partition on the
set of nodes that optimizes a given criterion or quality
function. Therefore, it absolutely needs as input the whole
network. In the opposite, a local community detection
method searches for a community for a particular node,
so it absolutely needs as inputs a node and, depending on
the situation it can need the whole network or a part of it.
Then, the output of a global method is a partition.

The Louvain heuristic approaches the partition that
maximizes a given criterion or quality function. The original
version of Louvain was designed to quickly optimize the
modularity quality function or Newman-Girvan (NG)
criterion [10]. Because of the rapidity of Louvain method,
in [11] the authors have recently proposed to adapt the
Louvain’s method to other quality functions or global
community detection criteria.

A global criterion of particular interest for us is the
Zahn-Condorcet (ZC) criterion (see [12], [13], [14], [15]
and [16]) since the resulting partition is composed of
a—consensus communities when choosing a = 0.5 (see
[15] for proof). Later in [17], the authors formulated a
generalisation of the Condorcet’s problem by introducing
a parameter &, 0 < a < 1 in the Condorcet’s function.
We call this version the Owsiniski-Zadrozny (OZ) criterion.
The partition that optimizes the OZ is composed of
a—consensus communities (see [15] for proof). For
a = 0.5 this criterion is equivalent to Condorcet’s criterion.

The Louvain method is very fast compared to many com-
munity detection methods. However, there is no guarantee
on the size of the communities using this method.

5. Proposed Solutions

In order to approach the solution of the problem (1)
we have elaborated three algorithms or solutions which
we called RANK-GAIN, RANK-GAIN+ and RANK-NUM-
NEIGHS. Each new version has been proposed in order to
face shortcomings not solved by the previous algorithms.

5.1. Solution 1: The RANK-GAIN Algorithm

For any node n belonging to the neighborhood S of the
local community D, the gain resulting from the addition of
n to D, noted g, is given by:

gn =y _04|D|a )

where £, is the number of links connecting n to D.



For a node n to respect the majority rule, its gain g,
must be positive. The greater this gain g, is, the more
neighbors in D node n has. Furthermore, a high value of
gain contributes to increase the density of the community.
This first algoritm is iterative, at each iteration at most one
node is added to D. The algorithm chooses to add the node
n* whose gain is maximal and positive. If more than one
node have the maximal gain we prioritize the one who has
more neighbors in S. Indeed, when a node n is added to
D the gain of all of its neighbors in S will increase by
(1 — «) for the next iteration. Therefore, there will be more
candidates for the next iteration and more possibilities to
enlarge the community to approach the solution of problem

(D.

5.1.1. Disadvantages of this solution. Let us suppose we
are looking for the maximal local consensus community
of node O in figure 1 with @ = 0.5. Algorithm RANK-
GAIN will return C(no) = {0,1,2,3,4} whereas 0 does
not respect the Condorcet’s rule. The optimal av—consensus
local community of node 0, denoted C°P!(ng), is either
{0,1,2,3} or {0,1,2,4}.

Optimal community of node 0

Figure 1. The problem of internal degree.

The majority rule states that every node in the local
community must be connected to more than a% of the rest
of the nodes in D (see problem (1)). When choosing a new
node to enter D the algorithm previously verifies if the new
node satisfies the rule. However, it does not verify if the
already existing nodes still verify the rule. Certainly, before
the addition of the new node the condition was verified by
all the existing nodes in D. Nonetheless, once a new node
joins D the rule becomes more strict to be satisfied because
every node must be connected to more nodes in D. In order
to face this problem we propose the solution in the next
section.

5.2. Solution 2: The RANK-GAIN+ algorithm

5.2.1. The internal degree. We have seen in section 5.1.1
that given a set of nodes D, the growth of this community
is limited by the internal degree of the existing nodes in
D. We call the internal degree of n, denoted d'™(n), the
number of internal connections of n to nodes in D. For the
example in figure 1, if « = 0.5 and D = {0, 1,2, 3}, the
internal degree of those nodes are 2, 3, 3 and 2 respectively,
and the community size is 4. Since every node must be
connected to more than half of its neighbors, adding a new
node may cause nodes 0 and 3 to break the rule because in
a community of size 5 every node must be connected to at
least 3 nodes. So, the addition of a new node is not possible

unless the new node is connected to nodes O and 3. This
leads to the following theorem:

Theorem 5.1. Given a node n with internal degree d'"(n)
the maximum possible size of an a-consensus commu-
nity it can belong to, denoted D™*(n), is given by:

D™ (n) = Rd:(”)ﬂ 3)

The notations [x] and |z ] represent the ceiling and the floor
functions of a real number = respectively.

Now, let us suppose D is an q-consensus community.
We denote dn; = mig{d’”(n)} the minimal internal
ne

degree of all the nodes in D. If we want to add nodes to D
to increase its size the maximum possible size D can reach
and still be an a-consensus community, denoted D™%*, is:

s _ R%ﬂ @
«

~ Given a community D, a node n € D is saturated if
d™(n) = d™" or |D| = D™**(n).

If we consider the example in figure 1 for D =
{0,1,2,3}, dpmin = 2, D™*® = 4, so nodes 0 and 3 are
saturated.

5.2.2. Modifications to the RANK-GAIN algorithm.
If no node is saturated it is possible to choose any node
from S to enter D as long as it verifies the rule. However,
if the local community contains saturated nodes the only
possibility to increase its size is to choose a node in .S from
the set of commun neighbors of all saturated nodes. If a
node n is saturated and d(n) = d*(n) (its degree is equal
to its internal degree) there is no possibility to add more
nodes to D because n has no neighbors in S. Otherwise
n would break the rule. The only possibility to increase
D when it contains saturated nodes is if d, > d™*(n).
Let us consider once more the graph in figure 1 and
D = {0,1,2,3}. Node 0 is saturated and d(0) = d*(0).
In this case, there is no any possibility of improvement, so
the algorithm must stop.

Henceforth, we will say that a node is supersaturated if
it is saturated and its degree is equal to its internal degree.
Taking into account the constraint of internal degree, some
modifications were made to algorithm 1. At each iteration
a previous verification if there is at least one saturated node
is done. There are three possibilities:

1) If no node is saturated, then the new node is chosen
according to the highest positive gain (and neighbors if
ties) as in algorithm 5.1.

2) If there is at least one saturated node and no node is
supersaturated, then the eventual new node is chosen
from the subset in S made of the common neighbors



of all saturated nodes, if this set is empty, the algorithm
stops.

3) If there is at least one supersaturated node the algorithm
stops.

5.2.3. Shortcomings of the RANK-GAIN+ algorithm.
Let us consider the following examples and a = 0.5:

Shortcoming 1: Let us consider the graph in the figure
2. Let us suppose we are looking for the maximal o-
consensus community of node 0. The optimal solution is
Dert = {0,1,2,3,4,5} (nodes in red in the graph on
the right). Let us suppose at the end of the third iteration
when applying RANK-GAIN+ the resulting community is
D = {0,1,2} (as shown in the graph on the left). Among
all the candidates in S = {3,4,5,6} for the next iteration
the only candidate with positive gain is node 6. So, it will
be chosen to enter D and the algorithm will stop and return
the suboptimal solution D = {0,1,2,6} (nodes in red in the
graph on the left). Indeed, once node 6 enters the community
no more improvement is possible.

Optimal community of node 0 Suboptimal community of node 0

Figure 2. Shortcoming 1

If the only parameter taken into account is the gain
when searching for a new node, nodes 3, 4 and 5 will never
enter the local community as they have a negative gain.

Shortcoming 2: Now, consider the graph in the figure
3. Let us suppose we are looking for the maximal a—
consensus community of node 5. The optimal solution is
Dert = {5,6,7,8} (nodes in red). After the first iteration,
the RANK-GAIN+ algorithm will add either node 6 or 7
to the community and then stops. Therefore, the resulting
community will be of size 2. Indeed, the other two nodes
will never be able to enter the community as their gain is

e

Optimal community of node 5 Suboptimal community

Figure 3. Shortcoming 2

In the next section we will propose a method which
solves this type of Shortcomings.

5.3. RANK-NUM-NEIGHS: An Algorithm based on
the number-of-neighbors

5.3.1. The importance of the number of neighbors. For
the shortcomings described in section 5.2.3, the right nodes

could not enter the community because their gains were
negative or null. Actually, allowing one of them to enter
the community would break the majority rule. However, in
the optimal solution all nodes verify the rule. For example,
node 3 in case 1 has negative gain equal to —0.5, so if it
joins the community it will not verify the rule. Nevertheless
in the optimal partition, D°P* = {0,1,2,3,4,5}, it does
verify the rule as it is connected to two more nodes, 4 and
5. However, the gain of each of these three nodes becomes
positive and equal to 0.5 if they enter the community
together.

Why not to let enter more than one node at each
iteration? Why not to prioritize the number of neighbors
in S rather than the gain? Indeed, the gain is not the most
important thing when choosing the new node to enter D.
At this point, let us remind the problem of the maximal
a—consensus community we want to solve (equation (1)):

Given a node ng in the graph, the purpose is the find
the biggest community containing ng where each node is
connected to more than a% of the other nodes.

So, the most important thing is the size of the commu-
nity. We are not looking for the densest community but for
the biggest community where all nodes must respect the
majority rule. To this end, we propose an algorithm that
prioritizes the entry of nodes with the highest number of
connections in S over the gain and allows to enter one
node or more at each iteration. We call this new version
RANK-NUM-NEIGHS.

5.3.2. The RANK-NUM-NEIGHS algorithm. According
to what was discussed in the previous section, this new
algorithm presents two main innovations:

1) It prioritizes the number of common neighbors over the
gain when choosing a new node (or more nodes) to enter
the local community.

2) At each iteration more than one node might enter the
local community.

The algorithm is iterative. At each iteration either, no
node, one node or a set of nodes is or are chosen to enter
D. It contains four functions:

1) Function rank_by_neighbors(): It returns a ranking of
nodes in S according to their number of neighbors in 5.

2) Function rank_by_gain(): given the graph G, two sets of
disjoint nodes: D and S, and «; it returns a ranking for
all the nodes in S according to their gain if added to D
(see equation (2)).

3) Function add_nodes(): this is the principal function of the
algorithm. This function takes as parameters the graph G,
the local community D, a set of nodes .S as the possible
candidates to enter D and the parameter «. It returns a
set of nodes IT* from S to add to D.

4) The main function algorithm(): it takes as inputs the
graph G, the node ng and the parameter «. The algorithm
adds a set of nodes II* to D as long as it is possible



based on the existing saturated nodes. At each iteration
the set of nodes to add is returned by the add_nodes()
function. If the add_nodes() function returns an empty
set, it means that there is no possibility of improvement,
then the algorithm stops and returns the local community
D.

The add_nodes() function is decribed in algorithm 1.
When selecting the best candidates to enter D this function
makes a previous verification of the respect of the majority
rule. In the following, if a subset of nodes denoted IT € S
are such that after being added to D all nodes in the
resulting community verify the majority rule we will say
that nodes in II are good candidates to enter D.

First, the function calculates the following variables:

¢ RC is the number of remaining candidates.

o Rank: the ranking of nodes in S calculated by function
rank_by_neighbors.

o 7: the current rank of neighbors, initialized to the highest
rank in Rank.

e ¢, the set of nodes whose rank is 7.

o Gain « rank_by_gain(G, D, €,., a): the ranking of nodes
in €, according to their gain.

e g: the current gain, it is initialized to the highest gain
found in Gain).

e Cand, called the set of current candidates, is the set of
nodes in S with rank 7 and gain g.

o IT*: the list of selected nodes to enter D. It can contain
no node, only one or more than one nodes.

« A boolean variable [ indicating if a set of good candidates
has been found (true) or not (false).

Next, the function selects randomly a node n* from the
set of candidates Cand. According to the values of current
rank r and current gain g, four situations can take place:

Situation 1: ¢ > 0, the gain of n* is positive. If all
nodes in D verify the majority rule after the addition of
n*, it means that nx is a good candidate and the function
returns IT* = n*, otherwise n* is dropped from the list
of candidates €and and the number of candidates RC
decreases by one. This process is repeated until either a
good node has been found (therefore I is true) or there are
no more candidates in Cand.

Situations 2, 3 and 4 take place when g < 0. In this
case n* can not be added alone to D because, it does
not verify the rule. In this case, the function tests if it is
possible to let it enter simultaneously with some of its
neighbors in S. The number of neighbors n* will need is
announced in theorem 5.2.

Theorem 5.2. Given an «-consensus community D, its
neighborhood S and a node n € S whose gain is
negative, the number of neighbors in S that n needs
to enter D to obtain a positive gain, denoted z, is:

T

where /,, in the number of links between n and D.

This means that n needs x more connexions, besides
£, to respect the majority rule in the resulting community.

Let us denote S(n) the set of the neighbors of any
node n in S. According to the value of x we distinguish
the following situations:

Situation 2: ¢ < 0 and r < z, so any node n among
the candidates €, has fewer neighbors in S than required
to enter D. Even if all of its neighbors enter D its gain will
stay negative or null. This will happen with all the nodes in
Cand and with all nodes in €, as they have the same rank
(number of neighbors) and at most the gain g. Therefore,
Cand is set to the empty set because no candidate in Cand
is a good candidate. The number of remaining candidates
RC is decreased by |€,.|.

Situation 3: ¢ < 0 and r = x, so any node n among
the candidates ¢, has as many neighbors in S as required
to enter D. The function chooses one node n* from Cand
and tests if all nodes in the set II = {n* U S(n*)} are
good candidates. If that is the case, the function returns
II* = II as the set of nodes to enter D. Otherwise n*
is dropped from the list of candidates C€and and the
number of candidates RC' decreases by one. This process
is repeated until either a good set of nodes has been found
(therefore I is true) or there are no more candidates in €and.

Situation 4: g < 0 and r > x, the function chooses one
node n* randomly from €&, and verifies if n* can enter D
with z of its neighbors. The set of chosen neighbors of n*
is denoted S(n*)(z). The function chooses up to x nodes
from S(n*) according to the following rule:
rule 1: Nodes in S(n*) with the highest ranks are chosen
first. If there are ties and more nodes are needed, the
function selects nodes with the highest gain. If still more
nodes are required and there are ties in rank and gain the
remaining nodes are chosen randomly among all possible
combinations.

Different combinations are tested until either one
combination IT = {n* U S(n*)(x)} composed of only good
nodes has been found or all the possible combinations of
S(n*)(z) nodes have been tested. Once one combination
of good candidates has been found the function returns
IT* = II. Otherwise n* is dropped from the list of candidates
€and and the number of candidates RC' decreases by one. A
new node n* is chosen randomly from Cand. This process
is repeated until either a good set of nodes has been found
(therefore I is true) or there are no more candidates in €and.

If the set of candidates is empty and no solution IT*
of good nodes has been found (I is false), the set of



candidates Cand is updated. If Cand is empty because there
are no more candidates with the current gain, the functions
skips to the next value of gain g. If Cand is empty because
there are no more candidates with the current rank, the
current rank 7 is updated to the next value. Finally we
update Cand as the set of nodes in S with rank r and gain
g. If all the ranks have been tested the function stops and
returns the set II*. This operation repeats as long as there
are still candidates, i.e. RC > 0 and no set of good nodes
has been found, i.e. I = false.

The function might return an empty set II* if no set of
good nodes has been found.

The algorithm proposed in this section solves all the
shortcomings previously studied. In order to generalize the
performance of this third version we compared the sizes of
the local communities obtained by RANK-NUM-NEIGHS to
those obtained by RANK-GAIN+. We ran the two algorithms
on real and artificial networks (the networks characteristics
are described on 6). The obtained results show that RANK-
NUM-NEIGHS performs better than RANK-GAIN+ in most
cases in both real and artificial networks.

5.3.3. A post-processing step. We added a post-processing
step to the algorithm to enhance the results. When looking
for the maximal av—concencus community of a node ng in
a graph, the local communities of all the neighbors of n
are estimated as well. Let n be the neighbor of ny whose
community C'(n) contains ng and is the biggest among those
of all its neighbors. If C'(n) is bigger that C'(ng) the function
sets the local community of ng to C'(n).

6. Evaluations

The RANK-NUM-NEIGHS algorithm is evaluated
according to three criteria: the sizes of the detected
communities, the stability and the execution time. The
evaluations concerning the stability are not presented in this
paper. We tested the stability of the algorithm on artificial
networks of different sizes. We executed the algorithm for
different values of the parameter «. For every node n of
each graph we made 10 iterations of the algorithm. For
these 10 sets we calculated the Jaccard index for the 10
sets. More than 80% of times we obtained a Jaccard index
equal to 1, which means that on average for more of 80%
of the nodes we obtained the same result after 10 iterations.
The remaining 20% presented a lot of variability.

We generated artificial LFR graphs (see [18]) of sizes
ranging from 1000 to 10000 nodes by increments of 1000.
The input parameters are the same as those considered in
[19]. We used 4 real social networks: ”The Zachary Karate
Club network (karate)” [20], "The College football network
(football)” [21], "Political blogosphere (polblogs)” [22] and
”Books about US politics (polbooks)” [23].

Algorithm 1 The add_nodes() function for RANK-NUM-
NEIGHS algorithm.

Require: A non-weighted graph G = (V, E), a set of nodes
D, a set of nodes S, the parameter «
Ensure: A set of good nodes IT* from S to enter D.

Calculate
e RC + |S|, Rank < rank_by_neighbors(G,S), r
(highest rank in Rank), €,.
e Gain «+ rank_by_gain(G, D, €, o), g (highest gain
in Gain).
e Cand <« set of nodes in €, whose gain is g.
e Set I + false, II* = {@}.
while (RC > 0 and I= false) do
if g > 0 then
while (€and # {&} and I=false) do
choose a node n* randomly from Cand.
if n* is a good candidate then
Set IT* = {n*} and I= true.
else
Drop n* from €and and RC = RC — 1.
end if
end while
else
Calculate: = « KOZ@;)Z)J + 1, where £ = (g +
a|D).
if (x > r) then
Set RC = RC — |€,|, €and = {2}
else if (z = r) then
while (Cand # {@} and I=false) do
choose a node n* randomly from Cand.
if IT = {n*US(n*)} are good candidates then
Set IT* =1II and I= true.
else
Drop n* from €and and RC = RC — 1.
end if
end while
else
while (Cand # {@} and I=false) do
choose a node n* randomly from Cand.
Set S(n*)(x) + Choose up to = nodes from
S(n*) according to rule 1.
if II = {n* U S(n*)(z)} are good candidates
then
Set IT* =1II and I= true.
else
Drop n* from €and and RC = RC — 1.
end if
end while
end if
end if
if (|Cand|=0) and I =false then
Update 7, ¢ and the set of candidates Cand.
end if
end while
return II*




6.1. Sizes of the detected communities

For all the datasets we ran RANK-NUM-NEIGHS 10
times for each node.

6.1.1. Comparison of Community sizes with the global
Louvain method. The boxplots of the community sizes for
the artificial and real networks are shown in figures 4 and
5 respectively. Figure 4 presents the results for only three
sizes 1000, 5000 and 10000 (the results for the other sizes
have nearly the same behavour).

Network Size:1000 Network Size:5000 Network Size:10000

Local community size
Local community size
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Figure 4. Community sizes for the artificial networks.
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Figure 5. Community sizes for real graphs.

For each network or dataset, the figures 4 and 5
compare the community sizes obtained by our algorithm
(local) to those obtained by the global criteria Zahn-
Condorcet (ZC) and Owsinski-Zadrozny (OZ), whose
solutions are approached by the Louvain method (as
explained in section 4.2). To simplify we denote by OZx
for x € [5,6,7,8] the Owsiiiski-Zadrozny criterion with
parameter o« = x/10. Notice that the criterion OZ5
is equivalent to the criterion ZC. There is a boxplot for
each value of the parameter «, which ranges from 0.5 to 0.8.

Concerning the artificial networks in figure 4, clearly our
algorithm returns bigger communities than those obtained by
the Louvain method with global criteria, except for o = 0.4.
Moreover, the results obtained by our algorithm present less
variability since the interquartile range of the boxplots are
much smaller than those of global criteria. Concerning the
real networks, we confirm once more that our algorithm
returns bigger communities for the four datasets. The dif-
ference is even much more remarkable, specially for the
polblogs dataset.

N=5000,a= 07

N=5000,a= 08 N= 5000, a= 09

Sizes of local communities
Sizes of local communities

Method Method Method

‘ © RANK-NUM-NEIGHS algorithm © Quasi clique (QC) ‘

Figure 6. Comparison of size with the QUICK method

6.1.2. Comparison of Community sizes with the QUICK
method. We compared the sizes of local communities
obtained with our algorithm to those obtained by the
QUICK method (see [8]) described in section 4.1. We ran
our algorithm 10 times for the LFR graphs of different
sizes ranging from 1000 to 8000 nodes by increments of
1000 for three values of the alpha parameter: 0.7, 0.8 and
0.9.

The figure 6 shows the boxplots of the community sizes
obtained by 5 iterations (labeled as itz for z € [1,2, 3,4, 5])
of our algorithm and by the QUICK (QC) method. The
figure 6 shows the results only for graphs of 5000 nodes,
the results are quite similar for the other sizes.

The figure 6 shows clearly that the communities obtained
by the method proposed in this paper are bigger than those
proposed in [8]. However, this difference decreases with « as
communities are smaller and closer to complete subgraphs.
We remark as well that the variability increases for the
Quasi-clique method. The figure 6 is also useful to evaluate
the stability of our algorithm in terms of community sizes
when comparing the boxplots of the 5 iterations.

6.2. Execution time

We executed the algorithm on artificial networks of sizes
ranging from 1000 to 10000; for three different values of
the mixing parameter A: 0.1, 0.2 and 0.3; for values of the
parameter o ranging from 0.4 to 0.9 by increments of 0.1.
We ran the algorithm 10 times for all the nodes of each
graph. The computer used for the experimentations has a
Quad Core processor running at 3.33 GHz and 15GB RAM.
The algorithm is written in python. The figure 7 shows the
execution time in seconds for each entire network.

The figure 7 shows that the execution time of the
algorithm is quite stable. The execution time seems to
increase smoothly with the network size. It increases with
the mixing parameter A. The time decreases with the
parameter «, since the communities become smaller when
o increases as it becomes more difficult for a node to
verify the rule to enter the local community. One reason
that explains the rapidity of this method is that at each
iteration it is possible to add more than one node, so the
nodes become saturated fast.
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Figure 7. Execution time to detect the local community of all nodes of
artificial LFR graphs.

We do not compare this execution time to that of the
QUICK method as this last one took more than one day for
a graph of 9000 nodes.

7. Conclusions and perspectives

In this paper a novel method called RANK-NUM-
NEIGHS for the problem of mining the maximal local a—
consensus community of a given node of a network has
been presented. Starting from a baseline method, the next
methods are introduced to address some shortcomings not
solved by the previous ones.

The method we propose in this paper prioritizes the
nodes who have the biggest number of neighbors in the
neighborhood of the community, over the gain. Besides
that, It allows to enter more than one node at each iteration.
The method verifies the chosen nodes guarantee the respect
of the majority rule.

RANK-NUM-NEIGHS gives good results in terms of
size, stability and execution time. It also performs better
in terms of community size than the existing method
for mining quasi-cliques called QUICK and than global
community detection methods.

Concerning the perspectives, this problem can be the
building block of more complex applications where the
internal density of community plays an important role. For
example, in friend recommandation, the missing links of
an «-consensus community can be recommended. In churn
prediction, the communities can better model the notion of
closest friends as studied in [24].
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