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Abstract: Graph Neural Networks (GNNs) are neural networks designed for processing graph data.
There has been a lot of focus on recent developments of graph neural networks concerning the
theoretical properties of the models, in particular with respect to their mathematical expressiveness,
that is, to map different graphs or nodes to different outputs; or, conversely, to map permutations of
the same graph to the same output. In this paper, we review the mathematical expressiveness results
of graph neural networks. We find that according to their mathematical properties, the GNNs that
are more expressive than the standard graph neural networks can be divided into two categories:
the models that achieve the highest level of expressiveness, but require intensive computation; and
the models that improve the expressiveness of standard graph neural networks by implementing
node identification and substructure awareness. Additionally, we present a comparison of existing
architectures in terms of their expressiveness. We conclude by discussing the future lines of work
regarding the theoretical expressiveness of graph neural networks.

Keywords: graph neural networks; message passing neural networks; expressiveness; Weisfeiler–
Leman algorithm

MSC: 68T07

1. Introduction

Since their early conception in [1], Graph Neural Networks (GNNs) have been used in
many disciplines, such as mathematics, physics, biology, and computer science; and in a
wide variety of applications, ranging from drug discovery, traffic time estimation or large
scale recommender systems. For more examples of applications, see [2].

This massive use of GNNs has led to the development of general frameworks, which
encompass most architectures [3]. Recent studies have also shown a lot of interest regarding
the theoretical properties of GNNs. In particular, the works of [4,5] launched a vast area
of research surrounding the expressiveness of GNNs, in terms of their limitations and the
ways in which these limitations can be uplifted [6].

The expressiveness of GNNs can be seen from several points of view: can GNNs
distinguish different graphs? For example, can a GNN distinguish between a toxic molecule
and a useful drug, between a pandemic outbreak and a seasonal flu, between attacks on a
website (fake news, DDOS, . . . ) and regular traffic? If a model is not expressive enough, it
can be impossible to do accurate predictions, for example when we apply GNNs to first
order logic [7]. Conversely, can GNNs assign the same results to isomorphic graphs, i.e.,
graphs that are a permutation of each other [8]? Since GNNs are insensitive to the order
of the nodes, can they approximate all the functions that are permutation invariant [9]?
Studying the mathematical expressiveness of GNNs can provide guarantees that the model
can solve these problems, or conversely that the architecture is not suited for the task.

Compared to a maximally expressive standard graph neural network such as the Graph
Isomorphism Network (GIN) [4], higher order networks gain expressiveness by incorporating
knowledge about the hypergraph data, such as hyperedges between sets of nodes [5]. More-
over, instead of building the layers in the network to be permutation invariant, non-invariant
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functions can be used then summed over all the set of permutations to produce permutation
invariant functions [10].

Instead of exploiting higher order knowledge, GNNs can obtain higher expressiveness
than the GIN architecture by adding information about the node being updated. This can
take several forms: adding features to the nodes to make them identifiable [11]; using the
structure of the local subgraphs to adapt the way information is transmitted [12]; using
rooted graphs instead of trees centered around the nodes being updated.

In this paper, we review the most fundamental properties of expressiveness of GNNs.
Specifically, we provide templates for the most widely used architectures, and we survey
the major mathematical results regarding their expressiveness, from obtaining the most
expressive architectures using higher order networks and invariant networks [13] to finding
computationally tractable and powerful architectures. These solutions often come from
different directions, and combining these insights might help create even more expressive
architectures at a manageable computational cost.

We present an overview of the approaches used to improve the expressiveness of
GNNs. We restrict ourselves to approaches that have mathematical theorems that prove that
the architectures are indeed at least as expressive as the standard GNNs. We distinguish
two main groups, which are represented in Figure 1. On the one hand, there are models that
achieve the highest level of expressiveness by using higher order data, such as hypergraph
data, at the cost of intensive computational requirements. On the other hand, more recent
models, while not as powerful as higher order methods, manage to be more expressive
than standard GNNs while being computationally efficient, by using node identification or
by incorporating graph substructure information in the model.
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Figure 1. Overview of mathematically expressive GNNs. Red boxes refer to sections of the paper;
and blue boxes represent ideas introduced by specific papers [9–22].

The paper is divided as follows. Section 2 presents the basic definitions related to
graphs and the notations used throughout the paper. Section 3 presents the structure that
is shared by the majority of GNNs, as well as the expressiveness of standard GNNs. Sec-
tion 4 presents the most powerful architectures, which are also computationally expensive.
Section 5 reviews cost effective GNNs that are still more powerful than regular GNNs.
Section 6 presents a summary of the results discussed in this paper. Section 7 concludes
and offers perspectives for lines of future works.

2. Basic Definitions and Notations

A Graph G = {V , E} is composed of nodes v ∈ V and edges in (u, v) ∈ E where
u, v ∈ V . A rooted graph Gv, also called egonet, is a graph where node v acts as the root.

A subgraph GS of G is a graph where VS ⊂ V and ES ⊂ E . An induced subgraph is a
subgraph where e = (u, v) ∈ (VS)2 for all e ∈ ES.

Table 1 introduces the notations used throughout the paper.

Figure 1. Overview of mathematically expressive GNNs. Red boxes refer to sections of the paper;
and blue boxes represent ideas introduced by specific papers [9–22].

The paper is divided as follows. Section 2 presents the basic definitions related to
graphs and the notations used throughout the paper. Section 3 presents the structure
that is shared by the majority of GNNs, as well as the expressiveness of standard GNNs.
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Section 4 presents the most powerful architectures, which are also computationally expen-
sive. Section 5 reviews cost effective GNNs that are still more powerful than regular GNNs.
Section 6 presents a summary of the results discussed in this paper. Section 7 concludes
and offers perspectives for lines of future works.

2. Basic Definitions and Notations

A Graph G = {V , E} is composed of nodes v ∈ V and edges in (u, v) ∈ E where
u, v ∈ V . A rooted graph Gv, also called egonet, is a graph where node v acts as the root.

A subgraph GS of G is a graph where VS ⊂ V and ES ⊂ E . An induced subgraph is a
subgraph where e = (u, v) ∈ (VS)2 for all e ∈ ES.

Table 1 introduces the notations used throughout the paper.

Table 1. Notations used in the paper.

Notation Description

V Set of nodes
E Set of edges

G = {V , E} Graph
N Number of nodes, i.e. N = |V|
d Feature vector dimension
σl activation function at layer l

X ∈ RN×d Node feature matrix
S Spectre related matrix. Usually, S = A or S = L.
A Adjacency matrix

L = D− A Laplacian matrix
D Degree matrix of G

Hl ∈ RN×nl Hidden representation of G at layer l
[L] {1, . . . , L}
{{}} multiset

HASH hash function

3. Graph Neural Network and Expressiveness
3.1. Graph Neural Network

A graph neural network is a neural network that operates on graph-structured data. It
can be used to solve three types of tasks. In node level tasks, the goal is to predict individual
node properties, such as its label in node classification. For this type of task, the graph is
often split in two groups: Vl which contains the nodes with a label, and Vu which contains
the nodes without a label. The network is trained on Vl and tries to predict the properties
of the nodes in Vu. In edge level tasks, the goal is to predict the links between nodes, e.g.,
whether two nodes are connected with each other, or the weights of the edges. In graph
level tasks, the goal is to predict properties of the whole graph, such as the toxicity of a
molecule. In this setting, the model is trained on graphs Gi and their labels Yi. The test set
contains unseen graphs from the same distribution.

A GNN can be represented by Equation (1):

Φ = φL ◦ φL−1 ◦ . . . φ1 (1)

where ◦ is the composition operator, φl , i ∈ [L] represents the l-th layer of the network.
Each layer can contain an activation function, like the ReLU or the sigmoid functions.

The layers of a GNN are usually of two types [23]: they can be graph filters, which
operate on the nodes’ hidden representations and produce new hidden representations for
the nodes. They behave according to Equation (2). The layers can also be graph pooling
layers, in which case the graph is coarsened into a smaller graph. The pooling layers follow
Equation (3).

H(l+1) = σl

(
gl(S, H(l))

)
(2)
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S(l+1), H(l+1) = pool(S(l), H(l)) (3)

Here, gl is a filter function that modifies the input signal H(l) while preserving the
structure of the graph, represented by S; pool is a function that reduces the node dimension
of the graph, e.g., if S(l) ∈ Rnl×nl , then S(l+1) ∈ Rnl+1×nl+1 with nl+1 < nl .

The vast majority of GNNs, such as Graph Convolutional Networks (GCN) [8], Graph
Attention Networks (GAT) [24], GraphSAGE [25], follow the Message Passing Neural Net-
work (MPNN) framework, which has been independently derived in several fields [3,26].
They are sometimes called spatial GNNs and they rely on an aggregation scheme to update
a node’s representation using the information coming from the neighbors of the node. More
formally, the MPNN graph filter takes the form of Equations (4) and (5).

m(l+1)
v = AGGREGATE

({{
h(l)u | u ∈ Nv

}})
(4)

h(l+1)
v = UPDATE

(
h(l)v , m(l+1)

v

)
(5)

AGGREGATE is a function that maps the multiset of the neighbors’ representations
into a single vector, e.g., the sum operator; the UPDATE operator can be a linear mapping
of the concatenation of h(l+1)

v and m(l+1)
v , e.g., W ×

[
h(l+1)

v , m(l+1)
v

]
for some weight matrix

W. UPDATE can also be the sum of h(l)v and m(l+1)
v .

The other type of graph filters are often called spectral filters and rely on either the
Laplacian L or the adjacency A matrix to update the representation of the nodes. These
filters follow Equation (6) and are also commonly used in practice [27–29]. pl(S) is a
polynomial function of S, fl can be a learnable function such as a neural network.

H(l+1) = σl

(
pl(S) fl(H(l))

)
(6)

The distinction between spectral and spatial GNNs has more to do with the field of
study from which the network is derived than in true differences between architectures;
indeed the authors in [30] show that both spectral and spatial GNNs can be expressed
in terms of a more general framework. For more comprehensive reviews of all the GNN
architectures, see [31,32].

Because the ordering in which the nodes are given is arbitrary, GNNs must be de-
signed to make this order irrelevant [33]. Mathematically, this translates to permutation
invariance and equivariance: given a permutation matrix P, a function f is said to be per-
mutation invariant if Equation (7) holds; likewise, f is said to be permutation equivariant if
Equation (8) holds.

f (PXPT) = f (X) (7)

f (PXPT) = P f (X) (8)

To evaluate a GNN or to compare two architectures, there are two approaches. The first
one is to train the models on established benchmarks [34]. The second approach consists in
establishing theoretical guarantees regarding the expressiveness of the architectures.

Measuring the expressive power of GNNs serves two purposes: to find the type of
tasks that GNNs can solve and the ones it cannot; and to compare architectures to find
more expressive ones.

Using GNNs instead of traditional neural networks such as Multi-Layer Perceptrons
(MLPs), which have been adapted to handle graph structured data, is motivated by the fact
that GNNs are exponentially more expressive. That is, increasing the number of layers of
a GNN creates exponentially more equivalence classes of rooted graphs than it does for
MLPs [35].

Moreover, the depth and width of a GNN play a vital role in the expressiveness of
the model. If the model is not wide enough or deep enough, there are some properties
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of a graph that it cannot capture, such as cycle detection, perfect coloring, and shortest
path [36].

When we analyze the expressiveness of a family of GNNs, the expressive power is
usually represented in two different ways: the ability to distinguish non-isomorphic graphs,
or the ability to approximate any permutation invariant function on graphs.

3.2. Graph Isomorphism and Weisfeiler–Leman

The problem of graph isomorphism can be formulated mathematically in the following
way. Given two graphs G1, G2, they are said to be isomorphic if they have the same number
of nodes and there exists a permutation that maps each node of G1 to a node in G2, while
preserving the structure, i.e., the edges.

One famous class of algorithms used for determining if two graphs are isomorphic is
the Weisfeiler–Leman (WL) algorithm, also called 1-WL [37]. It can be viewed as a graph
coloring scheme. Let c(t)i be the color of node i at step t. Then, the algorithm iterates
according to Equation (9). For each node, it updates its color at step t + 1 based on its
color and the color of its neighbors at the previous step t using a hash function. The link
between GNNs and WL was pointed out in [8]. A comprehensive review of the use of WL
in machine learning is presented in [38].

c(t+1)
v = HASH

((
c(t)v ,

{{
c(t)u | u ∈ Nv

}}))
(9)

While WL is known to fail at distinguishing some graphs, it performs well in most
cases [39]. For this reason, it is often used as the reference when determining the expressive
power of a GNN. The two concurrent works [4,5] proved that standard MPNNs, without
node features, are at most as powerful as the 1-WL test. Additionally, Ref. [4] proposed the
Graph Isomorphism Network (GIN) and proved that the architecture is as powerful at the
1-WL test.

The WL tests can be extended to k-WL where k ≥ 2 [40]. Instead of coloring a single
node, we color tuples of size k. Let vi ∈ Vk be a k-tuple of G, i.e. vi = (vi1 , . . . , vik ) where
vij ∈ V for j ∈ [k]. For the k-WL, we define the neighborhood of a tuple vi to be

Nj(vi) =
({

(vi1 , . . . , vij−1 , u, vij+1 , vik ) | u ∈ V
})

. (10)

Similarly, for Folklore WL (k-FWL) [40], a variant of the WL algorithms that uses a
different update rule, the neighborhood of vi is defined as

N F
u (vi) =

(
(u, vi2 , . . . , vik ), (vi1 , u, . . . , vik ), . . . , (vi1 , . . . , vik−1

, u)
)

. (11)

Using these neighborhoods, the update rule for k-WL follows Equation (12), while
k-FWL follows Equation (13).

c(t+1)
vi = HASH

((
c(t)vi ,

{{
c(t)u | u ∈ Nj(vi), j ∈ [k]

}}))
(12)

c(t+1)
vi = HASH

((
c(t)vi ,

{{
c(t)u | u ∈ N F

j (vi), j ∈ [n]
}}))

(13)

Since k-WL are known to be strictly more powerful than (k− 1)-WL for k ≥ 2, and
k-WL and (k− 1)-FWL have the same expressive power, adapting k-WL for GNNs leads to
more expressive GNNs [5,6]. This leads to higher order networks and invariant networks.

4. Higher Order Networks and Universal Approximation

Building network layers that work on tuples of nodes instead of single nodes requires
using tensors of higher dimension. Instead of having an input feature matrix X ∈ Rn×d

with an adjacency matrix A ∈ {0, 1}n×n, a hyper-graph can be represented using a tensor
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X ∈ Rnk×d [41]. In this manner, Xi represents the features of node i, xi,j of edge (i, j), Xi,j,l of
the hyper edge (i, j, l), and so on.

Because the ordering of the nodes is arbitrary, the GNN layers should be designed
to be either permutation equivariant or invariant. A composition of an equivariant layer
with an invariant layer leads to an invariant function. In [41], the authors characterize
all such types of linear layers. Namely, given a permutation matrix P and a function
vec that vectorizes a tensor, a linear layer L ∈ R1×nk

is invariant if and only if it follows
Equation (14):

P
⊗

k vec(L) = vec(L) (14)

where
⊗

is the Kronecker product. Similarly, a linear layer L ∈ Rnk×nk
is equivariant if and

only if it follows Equation (15).

P
⊗

2k vec(L) = vec(L) (15)

The authors [41] further provide a basis for the space of invariant and equivariant
layers, alongside their dimension.

Instead of trying to directly create an invariant layer, one can use arbitrary functions
and sum over all the permutations. This was first proposed in [10]. Given X f eatures,id the
feature matrix concatenated with a one-hot encoding of a position of the node, f a GNN,
a Relational Pooling GNN (RP-GNN) layer follows Equation (16). π is a permutation of
the nodes of G. The one-hot encoding added to X is permuted with π while X remains
fixed. This prevents the sum from reducing to a single element. Furthermore, selecting the
permutations on which to perform the sum can eliminate the factorial complexity induced
by all the permutations.

fRP(G) =
1
|V|! ∑

π∈Π|V|

f (π(A), X f eatures,π(id)) (16)

Building equivariant and invariant layers raises a question: can the network approxi-
mate any invariant or equivariant function, i.e., can GNNs act as universal approximators?
Provided that the tensors have a high enough dimension, Ref. [9] proved that models
based on the linear layers defined above can indeed approximate any invariant functions.
Specifically, networks using layers that are equivariant or invariant for a group G can be
expressed as in Equation (17):

φ = m ◦ h ◦ σl(Ld) ◦ · · · ◦ σ1(L1) (17)

where m is a multi-layer perceptron that flattens the output, h is a function that is invariant
for the group G, and Li are the equivariant layers for the group G that follow Equation (15).

Similarly, in addition to providing a different proof of the result from [9] regarding the
universality of the linear layers following Equation (14) with respect to invariant functions,
the authors of [13] show that, given a sufficient tensor size, equivariant networks can
approximate any equivariant function.

In terms of graph isomorphism, k-order GNNs, that is, GNNs that use a k-order tensor
as input such as hypergraphs, are more expressive than GNNs. Specifically, they are as
powerful as k-WL [6].

The problem with k-order GNNs is that they are computationally too expensive.
Universality results for computationally reasonable GNNs were first proven in [42], addi-
tionally showing that Folklore GNNs are the most expressive for a given k.

To design GNNs that are more powerful than 1-WL while still being computationally
efficient, we must exploit node properties such as their identification and the substructures
that they belong to.
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5. Computationally Efficient and Powerful Networks

Instead of using higher-order networks, finding more expressive architectures than
GNNs can be done by looking at the failure cases of MPNNs. Most of the failures can be
attributed to two related causes: the anonymity of nodes in the message passing stage,
where it is impossible to keep track of where the information is coming from [36]; and the
lack of substructure awareness from MPNNs [43].

Mitigating node anonymity is the subject of Section 5.1, while injecting substructure
awareness into MPNNs is discussed in Section 5.2.

5.1. Node Identification

MPNNs cannot distinguish information coming from identical nodes (i.e., nodes with
the same features and same degree). One way to remedy this problem is to color each
identical node with a different color. This is the process introduced in [11] with the k-CLIP
(Colored Local Iterative Procedure) algorithm. Each node with identical attributes are
mapped into groups V1, . . . , VK. Within each group, each node is assigned a distinct color,
by concatenating the color attribute, e.g., a one-hot encoding, with the features of the node.
k different coloring Ck are chosen out of all the possible colorings. A standard MPNN is
trained for each coloring, and the final output is given by Equation (18):

hG = ψ

(
max
c∈Ck

∑
v∈V

hc
v,L

)
(18)

where hG is the graph readout of the network, ψ is a learnable function, and hc
v,L is the

hidden representation of node v at the last layer L of the network using the coloring c. Com-
pared to a standard MPNN, the complexity of k-CLIP has an extra k factor that corresponds
to the number of colorings used. CLIP can be used with all the ∏K

k=1 |Vk| possible colorings,
in which case it is named ∞CLIP. While the ∞CLIP is a universal approximator [11], it suffers
from an exponential growth with respect to the size of the Vk, k ∈ [K]. k-CLIP is a random
algorithm, e.g., two different runs might lead to two different colorings. It is more efficient
than ∞CLIP, and universality results can still be obtained for its expectancy [11].

When a GNN has a sufficient number of layers, a node is feeding back information
to itself in its update: in an undirected graph, a node is a neighbor of its neighbor. For
example, given the graph in Figure 2a and the trees of height 1 starting from each of
its nodes in Figure 2b, B is a neighbor of A. With a standard MPNN, A will be used to
update B, which in turn will be used to update A, with no indication of the provenance
of the information. Therefore, as shown in [19], graphs with different structures can have
the same GNN computational graph. To alleviate this problem, the authors propose to
introduce identity-aware GNNs (ID-GNNs), where they use ego networks (rooted graphs)
in which the root is colored and thus can be identified in the computational graph. Figure 2c
shows the ego networks of height 1 for each of the nodes in the graph of Figure 2a. An
ID-GNN layer follows Equations (19) and (20), where MESSAGE0 and MESSAGE1 can
be MLPs, attention mechanisms, etc. MESSAGE0 is the message function for neighbors
of the root node, while MESSAGE1 is the message function to update the root node.
This set of equations are similar to Equations (4) and (5), except that the root node of
the ego graphs is identified and its message is used differently than for the rest of the
nodes. There is almost no added complexity compared to a standard MPNN: by setting
MESSAGE0 = MESSAGE1, we recover a standard MPNN. However, ID-GNNs can
differentiate graphs that a Graph Isomorphism Network [4] cannot, making them strictly
more powerful than the 1-WL test [19].

m(l+1)
v = AGGREGATE

({{
MESSAGE0(h

(l)
u ) | u ∈ Nv

}})
(19)

h(l+1)
v = UPDATE

(
MESSAGE1(h

(l)
v ), m(l+1)

v

)
(20)
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Figure 2. Example of a graph with its rooted trees and rooted subgraphs. The rooted subgraphs
incorporate structural information that is lost in rooted trees. MPNNs use rooted trees to update
notes. If the features are identical, MPNNs with a single layer will treat nodes B and F as the same; if
the network uses the rooted graph instead, it will distinguish B and F. (a) A graph with 6 nodes. A,
D, and E have degree 2, B and F have degree 3 and F has degree 4. (b) Rooted trees with depth 1
for each node. If the nodes have identical features and are not identified, the computational tree of
MPNN for A, D, and E are the same. (c) Rooted subgraphs with depth 1 for each node. Compared
with the routed trees, the A rooted graph is distinguishable from D.

A simpler approach consists in simply assigning a random feature to each node at
the beginning of the learning phase. Namely, the node feature matrix X is concatenated
with a matrix R ∈ RN×dr where R is a feature matrix that was sampled from a random
distribution. rGIN, the architecture obtained by adding the random feature assignment to
a standard GIN, can distinguish graphs that GIN cannot [21]. The random features ensure
that graphs that lead to the same GNN computational graphs will produce different graphs
most of the time with randomization. Additionally, random node initialization allows
MPNNs to become universal approximators without requiring higher order tensors [22].

Instead of using the neighborhood of each node, one can use anchor sets, which consist
of nodes sampled from the graphs. In [20], the authors propose the Position-aware Graph
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Neural Network. At each layer, k sets Si, i ∈ [k] of nodes are chosen. Then, for each node v,
a message mv,i is computed between v and the nodes in Si, as in Equation (21). Finally, the
hidden representation is updated by aggregating the messages from all the anchor sets, as
shown in Equation (22).

m(l)
v,i = AGGREGATE

({{
h(l)u | u ∈ Si

}})
(21)

h(l+1)
v = AGGREGATE

({{
m(l)

v,i | i ∈ [k]
}})

(22)

Removing the dependency on the neighborhood of the nodes changes the objective
function of the network. Following [20], the representation learning objective of a GNN
is written in Equation (23). φ represents the neural network parameterized by θ. Nodes u
and v are sampled according to Vtrain, the distribution of nodes in the training set. Su is the
q-hop neighborhood graph of u, parameterized by q, the maximum distance to u. Su and
Sv are sampled according to p(V), the distribution of the set of nodes in the graph. dz is a
similarity metric, and dy is a target similarity metric. By contrast, the learning objective of a
P-GNN is written in Equation (24), where S is an anchor set, sampled from the distribution
p(V). P-GNN can share information across the whole graph using common anchors
between nodes, while a standard GNN is restricted to the nodes in the neighborhood. This
makes P-GNN able to approximately capture properties that GNNs cannot capture, such
as the shortest paths in the network.

min
θ

E
[
L(dz(φθ(u, Su), φθ(v, Sv))− dy(u, v))

]
(23)

min
θ

E
[
L(dz(φθ(u, S), φθ(v, S))− dy(u, v))

]
(24)

In place of identifying each node, the expressiveness of MPNNs can also be improved
by making them aware of the substructures found in the graph.

5.2. Substructure Awareness

One area of interest is whether MPNNs can count substructures. That is, given a
graph structure or pattern, can an MPNN count the number of times that such structure,
up to isomorphisms, appear in the graph? The authors of [43] show that MPNNs cannot
count patterns with three or more nodes. However, MPNNs can perform subgraph-count
of star-shaped patterns. Looking at k-WL tests, the authors further show that finite k-
WL cannot perform an induced-subgraph-count of patterns that have more than a given
number of nodes.

MPNNs rely on a star-shaped aggregation pattern: they aggregate information coming
from neighbors to a central node (see Equation (1)). For example, in Figure 2a, node C
and E are treated in the same way to update node F. However, C and E do not have the
same structural information, as C is part of a triangle with B and F, while E forms one of
the endpoints of a path of length 2 with F. To capture this information, Ref. [12] proposes
the Autobahn architecture. Given a list of template graphs, at each layer, the network
decomposes the graph into a collection of subgraphs that are isomorphic to the templates.
A single neuron in the Autobahn is applied to subgraphs that match the list of templates.
The activation from the different templates are combined using narrowing and promotion
functions that allow us to, respectively, extend or decrease the number of nodes that an
activation function takes. The authors [12] argue that if the templates are carefully chosen,
Autobahn can match the expressiveness of higher order networks.

In a similar work, the authors of [18] propose the GRaph AutomorPhic Equivalence
(GRAPE) network, which uses automorphism groups in a similar manner to Autobahn [12].
They focus on template search using genetic algorithms: templates are produced from a
pool, and mutated via edge mutation or node mutation until a satisfactory template has
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been produced. The authors [18] further show that GRAPE can distinguish certain graphs
that MPNNs cannot distinguish.

By contrast, in [17], the authors propose to use a list of small connected graphs to
directly add structural features to nodes and edges by counting the number of times a node
(or an edge) acts as a member of an orbit of one the graphs. For example, in Figure 2c, node
C acts as a point in a triangle for the A rooted graph, but as one end of a path of length 3 in
the D rooted path. The structural features can be concatenated with the original features
and a GNN is trained on the new features. The authors [17] show that under certain
conditions on the subgraph matching, this type of architecture, called Graph Substructure
Networks (GSN), can be strictly more powerful than MPNNs and 1-WL.

On the topic of substructures, a new hierarchy of local isomorphisms between sub-
graphs is proposed in [16]: subgraph isomorphism, overlap isomorphism and subtree
isomorphism. Let Su be the neighborhood subgraph of u. It is the subgraph induced by
Ñu = Nu ∪ u. The overlap subgraph between two adjacent vertices u and v is defined by
Suv = Su ∩ Sv. Let S = {Sv|v ∈ V} and S∗ = {Svu|(v, u) ∈ E}. Structural coefficients for
nodes and their neighbors can be obtained by defining a function ω ∈ S × S∗ → R
that have the following properties: (1) local closeness: ω(Sv, Svu) > ω(Sv, Svu′) if Svu
and Svu′ are complete graphs and Svu has more vertices than Svu′ ; (2) local denseness:
ω(Sv, Svu) > ω(Sv, Svu′) if Svu and Suv′ have the same number of vertices, but Svu has more
edges; (3) isomorphic invariant: ω(Sv, Svu) > ω(Sv, Svu′) if Svu and Svu′ are isomorphic.

Based on these criteria, the authors in [16] propose the GraphSNN architecture. It
follows Equations (25)–(27). Equation (28) is an example of a valid ω function, parame-
terized by λ > 0. |Vvu| is the number of vertices of Suv, and |Evu| its number of edges.
Furthermore, the ω(Sv, Svu) can be normalized for the network operations. With this ω,
GraphSNN is more powerful than 1-WL [16].

m(l)
a = AGGREGATE0

({{(
ω(Sv, Svu), h(l)u

)
| u ∈ Nv

}})
(25)

m(l)
v = AGGREGATE1({{(ω(Sv, Svu) | u ∈ Nv}})h(l)v (26)

h(l+1)
v = UPDATE(m(l)

a , m(l)
v ) (27)

ω(Sv, Svu) =
|Evu|

|Vvu| · |Vvu − 1| |Vvu|λ (28)

Alternatively, instead of relying on structural coefficients or graph templates, we can
exploit the rooted subgraphs of each node. In this setting, we employ a network uplifting
scheme where a base GNN is used to compute node representations, which are fed to an
outer GNN. In [14], the authors use rooted graphs to compute three types of information:
the centroid encoding, which is obtained when the node is the root of the rooted graph; the
subgraph encoding, which represents the information from the other nodes in the rooted
graph; and the context encoding, which represents the information that the node carries
in the other rooted graphs. Let G(l)[Nk(v)] be the v rooted graph with height k, with the
node representations from layer l. Let GNN(l) = POOLGNN(l)(EMB(l)(i|G(l)[Nk(v)])|i ∈
Nk(v)) be the inner GNN, with POOLGNN(l) the pooling operator after the last layer of
the GNN, and EMB(l)(i|G(l)) the embeddings before the pooling operation of the GNN.
Let d(l)u|v be the encoding of distance from node u to v at layer l [44]. Let σ be the sigmoid
function, � the element-wise product. The GNN As Kernel (GNN-AK) architecture follows
Equations (29)–(32). The authors [14] prove that this GNN-AK is strictly more powerful
than 2-WL and not less powerful than 3-WL.



Mathematics 2022, 10, 4770 11 of 15

h(l+1)
v,subgraph = POOLGNN

({(
σ
(

d(l)u|v
)
� EMB

(
i | G(l)[Nk(v)]

))
, i ∈ Nk(v)

})
(29)

h(l+1)
v,centroid = EMB

(
v | G(l+1)[Nk(v)]

)
(30)

h(l+1)
v,context = POOLCONTEXT

({(
σ
(

d(l)u|v
)
� EMB

(
v | G(l)[Nk(u)]

))
, v ∈ Nk(u)

})
(31)

h(l+1)
v = UPDATE

(
h(l+1)

v,subgraph, h(l+1)
v,centroid, h(l+1)

v,context

)
(32)

WL and MPNNs encode a rooted subtree for each node. This is illustrated in Figure 2a,b.
The nodes in red in Figure 2b are updated using information from the nodes in blue.
Information about edges between the nodes in blue is lost. This might prevent the network
from learning useful information at the graph level. Instead, Ref. [15] proposes to learn
subgraph representations centered around rooted graphs. Let Gh

v be be the rooted graph of
v with height h, and N (v|Gh

w) the neighborhood of v within w’s rooted subgraph. A layer
of Nested Graph Neural Network (NGNN) follows Equations (33) and (34). In the last layer,
the representation of node w is obtained by performing a readout, as shown in Equation (35)
where L is the last layer and R0 is the readout function. These new representations can be
used as an input to a second GNN to perform graph-level tasks. These nested architectures
are strictly more powerful than 1-WL [15].

m(l+1)
v,Gh

w
= AGGREGATE

({{
h(l)

u,Gh
w
| u ∈ N (v | Gh

w

}})
(33)

h(l)
v,Gh

w
= UPDATE

(
h(l)

v,Gh
w

, m(l+1)
v,Gh

w

)
(34)

hw = R0

(
hL

v,Gh
w
| v ∈ Gh

w

)
(35)

While graphs may be difficult to distinguish, it is usually easier to distinguish sub-
graphs. With this in mind, Ref. [45] propose using bags of subgraphs that can then be
readout, and on which a set operation can be performed. There can be different policies in
selecting the subgraphs. These methods are more powerful than 1-WL.

6. Summary

The early works regarding GNN expressiveness were focused on two goals: provid-
ing bounds for MPNNs, and overcoming those bounds. The works of [4,5] established
Weisfeiler–Leman tests as the standard of comparison when it comes to expressiveness
of GNNs. The higher-order Weisfeiler–Leman tests provide a template for higher-order
GNNs [40].

Higher-order methods also arise when trying to design GNN layers that are universal
approximators or invariant [9] or equivariant functions [13]. To this end, hypergraphs with
tensors containing hyperedges data are required [41].

With higher-order networks, the complexity grows exponentially with the number of
nodes. This makes these networks computationally expensive, and alternatives must be
crafted to handle large graphs. Approaches with low overhead compared to a standard
MPNNs include some form of node identification. This can be achieved by adding colors
to each node [11], using rooted graphs [19], fixing sets of nodes that are used to update all
the nodes in the graph [20], or by adding random features to the nodes [21,22].

To retain part of the expressiveness of higher-order networks, subgraphs can be used
as templates on which to perform the convolutions. This breaks the star-shaped pattern
of MPNN convolutions and allows for other patterns such as triangles, circles, etc. A
network with a good selection of templates can be viewed as a higher-order network
where only a few substructures are used [12]. These templates can be searched via genetic
algorithms [18].

Substructures can also be used to add structural information to the nodes. This
can be achieved by counting the roles a node plays in different templates and adding
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this information to the features [17]. Alternatively, structural coefficients which take into
account the shapes of neighborhoods can inject structural information into the network [16].

On top of the previous methods, GNNs can be used a building block for other GNNs.
An inner GNN using rooted graphs can be used to produce hidden representations that
are fed into an outer GNN [15]. Moreover, each node can be updated using three types of
information: the centroid information, when the node is the root of the rooted graph; the
subgraph information, which is the information coming from its neighbors; and the context
information, which is the information it contributes to rooted graphs where it is not the
root [14].

All the expressiveness results of the architectures discussed in the paper are presented
in Table 2. The table contains only results that have a mathematical proof in the associ-
ated paper. In some cases, this could mean that higher bounds can exist that have not
been proven. Conversely, new architectures that are developed today could have a high
expressiveness, but since no mathematical proof is provided, the evidence is only empirical.

Table 2. Expressiveness of GNNs. Expressiveness is given with respect to how the authors proved
the results. GIN corresponds to the most powerful standard MPNN.

Architecture Expressiveness

GIN [4] 1-WL
k-GNN [5] (k-1)-WL

RP-GNN [10] strictly superior to GIN
PPGN [6] 3-WL

∞CLIP [11] universal approximator
ID-GNN [19] >1-WL

rGIN [21] >1-WL, universal approximator
PGNN [20] greater than MPNN

Autobahn [12] depends on the templates, can achieve k-GNN performance
GRAPE [18] stricly more powerful than MPNN

GSN [17] more powerful than MPNN and 1-WL under conditions.
GraphSNN [16] > 1-WL
GNN-AK [14] >2-WL, ≥ 3-WL

NGNN [15] > 1-WL

7. Conclusions and Future Works

In this survey, we present the expressive properties of standard graph neural networks.
We detail the two main ways in which we can improve the expressiveness of the models.
On the one hand, we can achieve maximally expressive networks by using higher order
networks that rely on hypergraph data and averaging over all node permutations, which is
computationally expensive. On the other hand, incorporating substructure awareness or
node identification in standard GNNs can also improve expressiveness while remaining
computationally efficient compared to higher order methods.

To the best of our knowledge, there has yet been no papers investigating the expressive
power of methods that combine the methods presented in Section 5. For example, can the
gains made in mathematical expressiveness from adding node identifiers be combined
with the ones made from using nested graph neural networks? Or do these gains have the
same root, rendering the combination as powerful as either of the methods individually?

Another way to improve expressiveness is to extend GNNs to more complex structures
such as cell complexes, of which graphs are special cases [46]. Graphs can be seen as part
of a bigger framework of geometric objects, which can be worked on using geometric deep
learning [33]. A possible line of work would be to explore other types of structures that
share profound links with graphs, and create efficient architectures that can be adapted
to graphs.
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