
Comparison between Inductive and Transductive
Learning in a Real Citation Network using Graph

Neural Networks
Guillaume Lachaud∗, Patricia Conde-Cespedes†, Maria Trocan‡

ISEP - Institut Suprieur d’lectronique de Paris
10 rue de Vanves, Issy-les-Moulineaux, 92130-France

Email: ∗glachaud@isep.fr, †pconde@isep.fr, ‡maria.trocan@isep.fr

Abstract—Graph data is present everywhere and has vast
ranging applications from finding the common interests of people
to the optimization of road traffic. Due to the interconnectedness
of nodes in graphs, training neural networks on graphs can be
done in two settings: in transductive learning, the model can
have access to the test features in the training phase; in the
inductive setting, the test data remains unseen. We explore the
differences between inductive and transductive learning on real
citation networks when the graphs are converted to undirected
graphs. We find that the models achieve better accuracy in the
transductive setting than in the inductive setting, but that the
gap between validation and test accuracy is also higher, which
indicates the models trained in an inductive setting have better
generalization capabilities.

I. INTRODUCTION

Graphs are present in almost all aspects of society and in
many fields of scientific studies. We spend a fair amount of
time every day surrounded by graphs: when we interact with
other people on social networks, browse content on streaming
platforms, buy products using online retailers, finding out the
best itineraries for travelling from one place to another. In
science, epidemiologists can observe the spread of a disease;
programming code can be analyzed using its abstract syntax
tree.

All this manipulation of graph structured data requires
efficient methods. Following the successes of deep learning
methods in computer vision [1] and natural language
processing [2], there has been significant development in the
area of graph representation learning using deep learning,
with the use of Graph Neural Networks (GNNs)[3]. Many
concepts from Convolutional Neural Networks (CNNs)[4]
and Recurrent Neural Networks (RNNs)[5] have efficiently
been transposed to GNNs[6], [7].

Due to the interconnectedness of nodes in graph data, it
is not possible to create a series of independent examples
to be fed to a neural network, as can be done in computer
vision with images or in natural language processing with
sequences of text input. Thus, there are two approaches
for splitting a dataset between training and test data: the
unlabeled features of the test nodes can be used during the
training phase of the model, or they can be ignored. The

first approach corresponds to the transductive setting, while
the latter represents inductive learning [8]. In transductive
learning, the model tries to predict labels of nodes already
seen in the training phase, while the model in inductive
learning is tested on unseen nodes. Inductive learning is
therefore better suited to improve the generalization power of
a model.

In this paper, we investigate the training of GNNs in
transductive and inductive settings, where the dataset is a
citation network which can change over time. We evaluate
how much validation and test data is used in training in the
transductive setting. We also present baselines of state-of-the
art architectures in the inductive setting on the citation of
network of computer science papers published on arXiv.

The paper is organized as follows. Section II presents the
main concepts, namely a brief overview of GNNs, and in par-
ticular the GNNs architectures that we use in the experiments.
Section III explains the problem of dataset splitting for graphs.
Section IV describes the ogbn-arxiv dataset, and provides
statistics about ogbn-mag and ogbn-papers100M in terms of
the distribution of the edges in the data splits. Section V
introduces and discusses the results. Section VI concludes the
work.

II. MAIN DEFINITIONS

Some of the more important advances in the field of GNNs
include the formalization of the generic architecture of a
GNN and the exploration of various neighbourhood selection
schemes. Furthermore, the development of new architectures
has mostly relied on adapting successful techniques from
other domains, such as attention mechanisms and knowledge
distillation, or on exploiting unique properties of graph
stuctured data, such as reversible GNNs or GNNs that exploit
information from multihop neighbours. Another particularity
of GNNs is the possibility to leverage the graph information
in the design of the features. Besides, the dependencies
between nodes play a role in how a graph is split between
training and test data, which can affect model performance.
In the rest of this section we present the main concepts that



will be used throughout the paper.

Message Passing Neural Framework

Most GNNs follow the message passing neural network
framework introduced in [9]. The network aggregates infor-
mation about the neighbors of a node to produce messages
that are used to update the hidden representation of each node.
More formally, let G = V, E be a graph where V is the set
of vertices and E the set of edges. hl

v represents the features
of a node v at the layer l, and H l the feature matrix for all
the nodes. evw represents the edge from node v to node w. If
X denotes the node features matrix, we have by convention
H0 = X . An update from layer l to layer l+1 takes the form

ml+1
v =

∑
w∈Nv

Ml(h
l
v, h

l
w, evw) (1)

hl+1
v = Ul(h

l
v,m

l+1
v ) (2)

where Ml and Ul are respectively the message and update
functions of layer l. The authors in [10] showed that
theoretically optimal GNNs must be permutation invariant
with respect to the nodes, i.e. the order in which the nodes
are input does not change the result of the network.

Neighborhood selection

The choice of neighbourhoods for each node can affect the
performance of the network. Classical graph neural networks
such as Graph Convolutional Networks [3] used the full
neighborhoods of each node. To be able to handle larger
graphs, some approaches apply neighbor sampling such as
GraphSAGE [11], while trying to preserve the graph structure
as in Cluster-GCN [12].

Transductive and inductive learning

The concepts of transductive and inductive learning are
related to the choice of neighborhood. In the transductive
setting, the neighbours of the training nodes can belong to
the validation and test sets; in this case, only their features
are known at training time. In the inductive setting, the
neighbours of the training nodes are restricted to other
training nodes. The nature of the dataset, in particular in the
way it evolves over time, can influence the preferred mode
of learning, i.e. when it is better to train the model using
transductive learning, and when it is better to use inductive
learning instead [8]. It is especially important in temporal
graphs [13], [14].

Attention mechanisms

Attention mechanisms were introduced in [5] in the context
of natural language processing, with the goal of learning
which parts of a sentence are the most important ones. They
were successfully imported to GNNs with the introduction of
the Graph Attention neTwork (GAT) in [7] and remain part

of most of the leading architectures [15], [16], [17].

Self-knowledge distillation

Another approach used for decreasing memory load is
knowledge distillation [18]. A large neural network is trained
and acts as a teacher for training smaller networks, the
students. Using this principle, it was shown in [4] that an
efficient way to implement knowledge distillation is to train
the early layers of a network as the students and the whole
network as the teacher.

Reversible GNNs

GNNs are memory intensive, to the point that many models
cannot be run with large datasets on standard GPUs. Most
of the memory cost comes from having to store the features
tensor of all the graph at each layer. To alleviate this problem,
reversible graph neural networks have been proposed in [19],
[6]. The idea is to propagate the information from layer to
layer using a chain of operations that will be performed in
an inverse way for the backpropagation. It increases the time
complexity in order to decrease the space complexity.

Adaptive Graph Diffusion Networks (AGDN)

In addition to memory constraints, adding layers to
GNNs can lead to oversmoothing of the features, where the
information of a single node is drowned in the information
coming from all the graph [20]. One way to counteract
this effect is to try and retrieve information at each layer
from different hop-neighborhoods; that is, nodes that are
one-hop apart (direct neighbours), those that are 2-hop apart
(neighbours of neighbours), and so on. One example of such
architecture was proposed in [16].

Graph Information Aided Node feature exTraction (GIANT)

The choice of features associated with each node and
edge can play a significant role in the efficiency of a
classifier. Most methods of feature extraction using raw data,
such as word2vec [21] or BERT [2] do not leverage the
graph topology when constructing the new features. The
Graph Information Aided Node feature exTraction (GIANT)
framework was proposed in [15] to incorporate the graph
topology in the feature extraction.

Dataset splitting

A naive approach to splitting a graph between train,
validation and test sets, is to randomly assign each node
to one group. This is what was done in [8] on graphs like
CiteSeer, Cora and Pubmed [22]. Similarly, the authors of
[12] follow a randomized split without validation set for
training their model. By contrast, the authors of [23], who
incorporated the Amazon dataset in [12] as the ogbn-products
in OGB, recommend using a split that relies on the sales



ranking of the products: the most sold items are in the
training set while the most rarely sold are in the test set. The
authors further argue that this split matches the behaviour of
real-world applications where, due to the cost of labelling
data, the most important nodes are labelled first and a model
is used to infer the labels of the less important nodes.

III. PROBLEM DESCRIPTION

In contrast to image and text data, graphs cannot easily
be separated into multiple datasets, because nodes are
interconnected with each other. In order to train a GNN, we
must create a training set on which the model is trained;
a validation set whose purpose is to find the best model;
and a test set containing unseen data to see if the model is
performing well.

When the graph can dynamically evolve over time, as is
the case for social networks or citation networks, the splitting
is usually based on the temporality of the nodes: the earliest
nodes are put in the training data and the most recent nodes
form the test data. This is coherent with the goal of most of
the applications using temporal graphs: being able to predict
future nodes features, edges creation, etc., using a model
trained on the existing data.

In transductive learning, the nodes in the training data
might have access to the features of the nodes in the validation
and test sets. Consider the node in Figure 1. For simplification
purposes, edges between other nodes than the central nodes
are removed. The edges are represented as undirected, and the
self-loop has been added. Here the node has 48 neighbours
(not counting itself) with the following distribution: 13 nodes
are in the training set, 16 in the validation data and 19 in the
test set. Each additional training node might contain other
edges with nodes in the validation data and test data. After
several layers of a GNN, and depending on the locality of
the node in the graph, the node has received information
about many of the nodes in the validation and test sets. In
the inductive setting, the model is trained using only the
subset of nodes in the training data; in our example, this
represents the blue nodes. Since most of the GNN entries on
the Open Graph Benchmark leaderboard 1 train their models
in a transductive setting, there is a spread of information from
the validation and the test data to the training data.

In conjonction with exploiting the features of nodes in
the test set, most methods use label information as a way to
augment the features of the nodes: given a set of features
Xfeats, a one hot encoding vector is used to represent
the label of the node. The new features Xonehot are then
concatenated with Xfeats to produce the input features X .
For the elements outside of the training set, the label is first

1The leaderboard can be accessed at https://ogb.stanford.edu/docs/leader
nodeprop/.

left empty; i.e. all the entries in the one hot vector are set to
zero. Then the vector is filled by applying a softmax to the
output logits of the GNN. If there is information from the test
set that is contained in the validation data, it means that the
network will indirectly try to produce the best label features
for the test nodes that are used in classifying the validation
nodes. It is thus trying to fit the test data.

IV. DATASETS

Some of the most used dataset benchmarks come from the
Open Graph Benchmark (OGB) [23], which contains datasets
for node prediction, link prediction and graph prediction
tasks. OGB has homogeneous and heterogeneous graphs of
varying sizes, directed and undirected graphs from a variety of
applications, such as protein-protein interactions, molecular
graphs, knowledge graphs, products graphs or citation
networks. Additionally, OGB also offers large scale graph
challenges, where the graphs contain millions of nodes. [24].
In this paper we focus on the ogbn-arxiv, ogbn-papers100M
and ogbn-mag datasets.

obgn-arxiv contains all the computer science papers in the
arXiv repository that are indexed by the Microsoft Academic
Graph (MAG) [25]. It is a directed graph with 169,343 nodes
and 1,166,243 edges. Each node contains a 128-dimensional
feature vector that represents the average embedding of the
word embeddings in the title and the abstract, where the
embedding function is a word2vec [21] that was trained on
MAG [25]. Each node additionally contains a year attribute
which indicates the year of publication.

The label of a node is the subject to which the
paper belongs. Each class represents one of the 40
categories in the arXiv computer science repository. More
exhaustive information about these classes can be found at
https://arxiv.org/archive/cs.

ogbn-papers100M is a dataset constructed in a similar way
to ogbn-arxiv, except that it contains more than 111 million
papers and that the classification task is performed on the
subset of papers that corresponds to all the papers published
on the arXiv website; it is not restricted to computer science
and there are 172 subject areas.

ogbn-mag is a heterogeneous graph which contains about
736,000 papers, 1.1 million papers, 8,700 institutions and
60,000 fields of studies. The features of the nodes are
constructed with the same approach that was used for
creating the features of ogbn-arxiv. The task is to predict the
venue of the paper.

To ease manipulation with common GNNs, these graphs
are usually converted to an undirected graph by adding all the

https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/
https://arxiv.org/archive/cs


Fig. 1. Node in the training set with neighbors in all the graph.

reverse edges to the network 2, while also adding self-loops
to each node. Transforming the graph into an undirected
one makes the adjacency matrix symmetric, and thus easier
to handle. Adding self-loops allows each node to pass its
hidden representation to the next layer; without self-loops,
the representation of the node at the next layer might not
contain any information from the features of the node at the
previous layer.

When training a GNN on a social citation networks from
OGB, ogbn-arxiv, ogbn-mag and ogbn-papers100M, the
recommended data split by the authors of [23] is to put all
the papers published before 2018 in the training set; those
published in 2018 in the validation set and the rest in the
test set. Table I shows the distribution of nodes and edges
in ogbn-arxiv, ogbn-mag and ogbn-papers100M, as well as
the number of edges that have a source and a target node in
a different part of the data split, e.g., one node in the train
set and the other in the test set. We see that in ogbn-arxiv,
a model trained in a transductive setting can exploit about
200, 000 edges, of which only 40% are in the training set.
The phenomenon is less important in ogbn-mag where 80%
of the edges are in the training set. Considering only the
edges between labeled nodes, which account for a small
portion of all the edges, ogbn-papers100M has also 80% of
its edges coming from the training set.

Citation networks change over time, as fields grow in
importance while others dwindle. This is shown in Table II
which contains the most frequently occurring class per
year in the ogbn-arxiv dataset. Some classes, such as the
cv class (Computer Vision) were not present in the top 5
before suddenly reaching second then first position, as it
happened between 2013 and 2015. These distribution changes

2In the case of ogbn-mag, only the reverse edges related to a paper citing
another paper are added.

emphasize the importance of inductive learning: GNNs need
to be trained to be able to adapt to these changes.

V. EXPERIMENTS

We compare the performance of models trained in two
different settings: transductive and inductive learning. In the
first setting, the model has access to the training data and
the unlabeled validation and test data. In the second setting,
the model has only access to the training data. Each setting
follows the same temporal split presented in Section IV. A
practical way to remove the edges going from or to unlabeled
nodes is to generate the subgraph of the network that contains
only the nodes within the given set.

The architectures we compare are the best performing
architectures on the ogbn-arxiv dataset. The leaderboard can
be found at https://ogb.stanford.edu/docs/leader nodeprop/
#ogbn-arxiv. Specifically, we train Deep RevGAT [6] and
Adaptive Graph Diffusion Network (AGDN) [16] models.
The Deep RevGAT architecture follows the message passing
neural framework [9]. It is a GAT [7] which has been
converted to a reversible GNN [6] to remove the memory
constraints imposed by the storing of a feature matrix for each
layer of a traditional GNN. We explore the importance of
self-knowledge distillation [4] by training the Deep RevGAT
with and without knowledge distillation. Additionally, we
investigate the importance of feature selection, using either
the original features, the features extracted with the GIANT
framework, and the features with added label information.

All the experiments are performed with a 24 GB Nvidia
RTX GPU. The code is written in Python, PyTorch and DGL
(Deep Graph Library) [26]. The ogbn-arxiv dataset is taken
from OGB [23]. Several Deep RevGAT are trained with a
different number of layers. The AGDN model is trained both
with and without using a big of tricks presented in [27] that

https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-arxiv
https://ogb.stanford.edu/docs/leader_nodeprop/#ogbn-arxiv


TABLE I
DISTRIBUTION OF EDGES IN TRAIN, VALIDATION AND TEST.

Graph Detail number of edges edges in two groups

ogbn-arxiv original graph 1,166,243 -
ogbn-arxiv with self-loops and reverse edges 2,484,941 -
ogbn-arxiv train nodes subgraph 829,007 -
ogbn-arxiv validation nodes subgraph 86,671 -
ogbn-arxiv test nodes subgraph 167,883 -
ogbn-arxiv train and validation data 1,351,570 435,892
ogbn-arxiv train and test data 1,710,834 713,944
ogbn-arxiv validation and test data 506,098 251,544

ogbn-mag original graph (only citations) 5,416,271 -
ogbn-mag with self-loops and reverse edges 11,568,931 -
ogbn-mag train nodes subgraph 8,389,507 -
ogbn-mag validation nodes subgraph 177,111 -
ogbn-mag test nodes subgraph 123,583 -
ogbn-mag train and validation data 10,149,426 1,582,808
ogbn-mag train and test data 9,575,822 1,060,732
ogbn-mag validation and test data 533,884 231,190

ogbn-papers100M original graph (only citations) 1,615,685,872 -
ogbn-papers100M with self-loops and reverse edges 3,342,431,700 -
ogbn-papers100M train nodes subgraph 21,315,319 -
ogbn-papers100M validation nodes subgraph 330,045 -
ogbn-papers100M test nodes subgraph 639,152 -
ogbn-papers100M train and validation data 24,506,366 2,861,002
ogbn-papers100M train and test data 25,144,635 3,190,164
ogbn-papers100M validation and test data 1,583,153 613,956

TABLE II
TOP 5 CLASSES (BY SIZE) AND PER YEAR IN obn-arxiv. ONLY THE 5 MOST PROMINENT CLASSES ARE SHOWN.

Year Class 1 size Class 2 Size Class 3 Size Class 4 Size Class 5 Size

2019 lg 8690 (21.88%) cv 8584 (21.62%) cl 4075 (10.26%) it 2256 (5.68%) ro 1602 (4.03%)
2018 cv 6846 (22.97%) lg 4458 (14.96%) cl 2849 (9.56%) it 2273 (7.63%) ai 1232 (4.13%)
2017 cv 4326 (20.18%) it 2597 (12.11%) lg 2114 (9.86%) cl 1753 (8.18%) ai 933 (4.35%)
2016 cv 2646 (16.19%) it 2525 (15.45%) lg 1374 (8.41%) cl 1185 (7.25%) ds 850 (5.20%)
2015 it 2210 (18.36%) cv 1453 (12.07%) lg 1008 (8.38%) ds 736 (6.12%) si 532 (4.42%)
2014 it 1755 (19.17%) cv 705 (7.70%) ds 631 (6.89%) lg 593 (6.48%) ni 483 (5.28%)
2013 it 1617 (19.88%) ai 927 (11.40%) lg 579 (7.12%) ds 552 (6.79%) ni 441 (5.42%)
2012 it 1316 (20.45%) lg 680 (10.57%) ai 547 (8.50%) ds 433 (6.73%) ni 341 (5.30%)
2011 it 1142 (25.80%) ds 384 (8.67%) lo 246 (5.56%) ni 223 (5.04%) ai 217 (4.90%)
2010 it 940 (26.37%) ds 298 (8.36%) lo 240 (6.73%) ni 210 (5.89%) ai 189 (5.30%)

can improve performance.

Each model is trained for 2,000 epochs. At the end, the
model weights saved are the ones which led to the best
validation accuracy. Additionally, each model is trained for
10 runs in order to mitigate the fluctuation in accuracy over
each run.

Table III shows the results of the training computations
in a transductive setting. The difference between validation
and test accuracy is also shown in the last column. Table IV
shows the results of the same models in the inductive setting.

We see that in the transductive learning setting, the Deep
RevGAT model achieves the best accuracy with the smallest
number of layers. Using self-knowledge distillation with more
layers actually worsens the performance. The increase in
the difference between validation and test accuracy indicates

that the model is trying to fit the validation data, and that
the validation data and test data are not completely similar.
This is expected because the addition of new papers to the
citation network may change the structure of the graph, and the
model might not be able to predict these unforeseen structures.

In the inductive setting, the performance of the model
with self-knowledge distillation increases with the number of
layers, while the gap between validation and test accuracy
decreases. The model with 5 layers and knowledge distillation
achieves the best test accuracy of all the models trained with
inductive learning. The performance is close to the one from
the top model in the transductive setting.

Models trained on the same dataset in transductive and
in inductive learning usually achieve better test accuracy in
transductive learning [14]. This is an expected behaviour
because the transductive model already had access to test



TABLE III
VALIDATION AND TEST ACCURACY FOR TRANSDUCTIVE LEARNING.

Model Validation accuracy Test accuracy Difference between validation and test

RevGAT, teacher, 2 layers 76.99± 0.06 75.98± 0.12 1.01
RevGAT, KD 2 layers 77.13± 0.10 76.17± 0.15 0.96

RevGAT, 3 layers 77.13± 0.06 75.95± 0.11 1.18
RevGAT, KD 3 layers 76.93± 0.08 75.61± 0.15 1.32

RevGAT, 5 layers 77.11± 0.06 75.80± 0.12 1.31
RevGAT, KD, 5 layers 77.24± 0.09 75.97± 0.09 1.27

AGDN, original features * - 73.46± 0.17 -
AGDN *with BoT, original features - 74.10± 0.15 -
* the accuracy of these models were taken from the authors of the model.

TABLE IV
VALIDATION AND TEST ACCURACY FOR INDUCTIVE LEARNING. THE BEST SCORE IS HIGHLIGHTED IN BOLD. KD STANDS FOR KNOWLEDGE

DISTILLATION.

Model Validation accuracy Test accuracy Difference between validation and test

RevGAT, 2 layers, 76.75± 0.08 75.91± 0.14 0.84
RevGAT, KD, 2 layers, 76.74± 0.05 75.81± 0.13 0.93

RevGAT, 3 layers, 76.78± 0.08 76.04± 0.10 0.74
RevGAT, KD, 3 layers, 76.78± 0.09 75.97± 0.09 0.81

RevGAT, 5 layers, 76.84± 0.05 76.00± 0.10 0.84
RevGAT, KD, 5 layers, 76.85± 0.06 76.07± 0.07 0.78

RevGAT, 3 layers, no label features, 76.54± 0.09 75.83± 0.10 0.71
RevGAT, KD, 3 layers, no label features, 76.63± 0.08 75.97± 0.06 0.66

AGDN, original features, 72.47± 0.12 73.20± 0.17 −0.73
AGDN with BoT, original features, 73.62± 0.07 74.00± 0.07 −0.38

AGDN, GIANT features, 76.28± 0.17 75.38± 0.22 0.9

data in the training phase. The fact that the models achieve
similar performances in transductive and inductive settings
may be an indication that the models are not fully exploiting
the information available during training, and that new
architectures are needed to leverage it. Indeed, the fact that
the AGDN model trained with the original features has a
higher test accuracy than its validation accuracy suggests that
the model is slightly underfitting the data, and that either the
features must be changed, or the model needs to be modified
to better exploit the data.

The use of features that exploit the graph topology, created
with the GIANT framework, could partly explain what the
gap between transductive and inductive learning is small:
because the features are created using the entire graph, some
of the test information is already embedded in the features
of the training nodes. Since the AGDN model trained with
the original features achieves comparable accuracy in both
settings, the GIANT extracted features cannot account for the
small gap.

In the inductive setting, directly encoding the label
information as part of the nodes features using a one-hot
encoding scheme does not seem to improve performance.
While the Deep RevGAT model with 3 layers trained with
label features performs better than the model trained solely

on the GIANT features, adding self-knowledge distillation
eliminates the difference.

The most likely reason why the models achieve comparable
results in transductive and inductive settings is that each
model employs some form of neighbourhood sampling in
the training phase. This makes the models more robust and
acts as a regularizer in preventing overfitting to the data. The
importance of edges coming from validation and test data is
reduced as they do not systematically appear in the sampled
edges.

VI. CONCLUSION

In this paper we studied the difference between transductive
and inductive learning for citation networks where the graphs
have been converted to undirected graphs and the train,
validation and test sets have been constructed using the
temporal information of the nodes. We saw that the training
datasets contain many edges from the validation and test sets:
one fifth of the edges in the train set of ogbn-mag are from
the validation or test set, while two thirds of the edges in
ogbn-arxiv come from outside of the training set.

To analyze the importance of these edges, we trained state
of the art GNNs in an inductive setting where the training
set contains only edges from within the train set. We found



that the networks achieved similar performances in either
a transductive or inductive setting. This may be due to the
neighbourhood sampling methods used by most GNNs that
reduce overfitting to the data. This also suggests that current
models can be improved, as models usually perform better in
transductive settings.

Furthermore, we observed that the gap between validation
and test accuracy was lower in the inductive setting than in
the transductive setting. This is an indication that the models
trained in the inductive setting were better at generalizing
than their counterparts trained in the transductive setting.
Moreover, this suggests that new architectures will likely be
able to improve on the current results.

Some perspectives for future work include performing the
same experiments on ogbn-papers100M and ogbn-mag to
explore whether the models maintain their accuracy when we
remove the edges from different data splits.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, May 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
Training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and
T. Solorio, Eds. Association for Computational Linguistics, 2019, pp.
4171–4186.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017.

[4] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be Your Own
Teacher: Improve the Performance of Convolutional Neural Networks
via Self Distillation,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV). Seoul, Korea (South): IEEE, Oct. 2019, pp.
3712–3721.

[5] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-
9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015.

[6] G. Li, M. Müller, B. Ghanem, and V. Koltun, “Training graph neural
networks with 1000 layers,” in Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, ser. Proceedings of Machine Learning Research, M. Meila and
T. Zhang, Eds., vol. 139. PMLR, 2021, pp. 6437–6449.

[7] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018.

[8] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” in Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, ser. JMLR Workshop and
Conference Proceedings, M.-F. Balcan and K. Q. Weinberger, Eds.,
vol. 48. JMLR.org, 2016, pp. 40–48.

[9] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proceedings of
the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, ser. Proceedings of Machine
Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70. PMLR,
2017, pp. 1263–1272.

[10] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

[11] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, ser. NIPS’17.
Red Hook, NY, USA: Curran Associates Inc., Dec. 2017, pp. 1025–
1035.

[12] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh, “Cluster-
GCN: An Efficient Algorithm for Training Deep and Large Graph
Convolutional Networks,” in Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Jul.
2019, pp. 257–266.

[13] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bron-
stein, “Temporal Graph Networks for Deep Learning on Dynamic
Graphs,” arXiv:2006.10637 [cs, stat], Oct. 2020.

[14] D. Xu, C. Ruan, E. Körpeoglu, S. Kumar, and K. Achan, “Inductive
representation learning on temporal graphs,” in 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

[15] E. Chien, W.-C. Chang, C.-J. Hsieh, H.-F. Yu, J. Zhang, O. Milenkovic,
and I. S. Dhillon, “Node Feature Extraction by Self-Supervised Multi-
scale Neighborhood Prediction,” arXiv:2111.00064 [cs], Oct. 2021.

[16] C. Sun and G. Wu, “Adaptive Graph Diffusion Networks with Hop-Wise
Attention,” arXiv:2012.15024 [cs], Dec. 2020.

[17] C. Sun, H. Gu, and J. Hu, “Scalable and Adaptive Graph Neural
Networks with Self-Label-Enhanced training,” arXiv:2104.09376 [cs],
Jul. 2021.

[18] G. E. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” CoRR, vol. abs/1503.02531, 2015.

[19] J. Liu, A. Kumar, J. Ba, J. Kiros, and K. Swersky, “Graph normalizing
flows,” in Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, Eds., 2019, pp. 13 556–13 566.

[20] G. Li, M. Muller, A. Thabet, and B. Ghanem, “DeepGCNs: Can GCNs
Go As Deep As CNNs?” in 2019 IEEE/CVF International Conference
on Computer Vision (ICCV). Seoul, Korea (South): IEEE, Oct. 2019,
pp. 9266–9275.

[21] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in 1st International Conference on
Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May
2-4, 2013, Workshop Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2013.

[22] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective Classification in Network Data,” AI Magazine, vol. 29,
no. 3, p. 93, Sep. 2008.

[23] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning
on graphs,” in Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, Virtual, H. Larochelle,
M. Ranzato, R. Hadsell, M.-F. Balcan, and H.-T. Lin, Eds., 2020.

[24] W. Hu, M. Fey, H. Ren, M. Nakata, Y. Dong, and J. Leskovec, “OGB-
LSC: A Large-Scale Challenge for Machine Learning on Graphs,” Oct.
2021.

[25] K. Wang, Z. Shen, C. Huang, C.-H. Wu, Y. Dong, and A. Kanakia, “Mi-
crosoft Academic Graph: When experts are not enough,” Quantitative
Science Studies, vol. 1, no. 1, pp. 396–413, Feb. 2020.

[26] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma,
L. Yu, Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep
graph library: A graph-centric, highly-performant package for graph
neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[27] Y. Wang, J. Jin, W. Zhang, Y. Yu, Z. Zhang, and D. Wipf, “Bag of Tricks
for Node Classification with Graph Neural Networks,” arXiv:2103.13355
[cs], Jul. 2021.


	Introduction
	Main definitions
	Problem description
	Datasets
	Experiments
	Conclusion
	References

