Graph Neural Networks-based Multilabel
Classification of Citation Network

Guillaume Lachaud!?, Patricia Conde-Cespedes3, and Maria Trocan':*
L ISEP - Institut Suprieur dlectronique de Paris.
10 rue de Vanves, Issy les Moulineaux, 92130-France
? glachaud@isep.fr
3 pconde@isep.fr
4 maria. trocan@isep.fr

Abstract. There is an increasing number of applications where data can
be represented as graphs. Besides, it is well-known that artificial intelli-
gence approaches have become a very active and promising research field,
mostly due to deep learning technologies. However popular deep learning
architectures were designed to treat mostly image and text data. Graph
Neural Network is the branch of machine learning which builds neural
networks for graph data. In this context, many authors have recently
proposed to adapt existing approaches to graphs and networks. In this
paper we train three models of Graph Neural Networks on an academic
citation network of Computer Science papers, and we explore the advan-
tages of turning the problem into a multilabel classification problem.

Keywords: Graph Neural Networks - Citation Network - Multilabel Classifica-
tion

1 Introduction

Graphs are a kind of structured data that have become one of the pillars of
our society. They are ubiquitous, appearing for example in biology with protein
interaction graphs, in chemistry with molecules, in epidemiology, telecommuni-
cations, finance, sociology with social networks. Graphs are expressive enough
that they can model complex networks such as interactions between billions of
users. As technology develop and the collected data becomes more structured,
graph’s role in shaping our world will increase.

While traditional machine learning was focused on providing good statisti-
cal models that had a strong theoretical background, deep learning employs a
data driven approach. The first neural network models can be trace back as far
70 years ago, however they lacked the computational resources and data to be
efficient. With the rise of faster computers and the use of Graphical Processing
Units (GPUs), alongside the accumulation of data on the Internet, deep learn-
ing has seen tremendous success in computer vision [I2] and natural language

processing [3].

Although Convolutional Neural Networks (CNNs) perform well on image
tasks and Recurrent Neural Networks (RNNs) are the standard for manipulating
text sequences, neither of these architectures are designed to exploit the rela-
tions between nodes in graphs. These led researchers to build new architectures
of neural networks dedicated to handling graph data: Graph Neural Networks
(GNNs). In just a few years the field of GNN has vastly grown and incorporates
knowledge from machine learning and graph theory [24].

In this paper, we perform a multiclass classification on the citation network
of all the Computer Science papers (CS) published in the arXiv web, extracted
from the the Open Graph Benchmark repository [9], and referred to as ogbn-
arziv. We train three graph neural networks and we select the best performing
one to examine the misclassification errors. We attribute the errors to two main
causes: in many cases, the second most likely class predicted by the model is
the real class. Secondly, the model has difficulty classifying some of the less rep-
resented classes. We propose turning the task into a multilabel classification task.

In many cases, classification task require neural networks to produce multiple
labels: images have several elements, text can be related to different topics, and
nodes in a graph may be related to several classes via different neighbors. Mul-
tilabel classification for each type of data led to the development of specialized
network architectures [T6[211T3].

The paper is divided as follows: Section [2 presents the history of GNNs and
some of the existing graph datasets that are used as benchmarks. We detail the
architecture of the GNNs we are using in the paper. Section [3| describes ogbn-
arxiv in detail; Section [4] introduces the results of our experiments Section
considers a multilabel classification approach to mitigate the errors of the model.
Section [6] concludes the work and offers future areas of improvement.

2 Related works

Graph neural networks first emerged in the context of extending recurrent neu-
ral networks to handle structured data [I8]. Most of the leading approaches now
follow a structure similar to the one introduced in [6]: the hidden representation
of a node is updated using the hidden representation of its neighbors. The main
differences in architectures are usually in how the representations are used, e.g.
aggregating the features in GraphSAGE [7], and in the weighing of the neigh-
bors, e.g. using fixed weights in Graph Convolutional Networks (GCN) [I1], or
assigning attention score in Graph Attention neTwork (GAT) [20]. For complete
surveys of graphs neural networks, see [24J23]. One of our motivations for se-
lecting GraphSAGE, GCN and GAT, is that since they are all variations on a

more general architecture framework, experiments done with these models will
to some extent generalize to other GNNs.

We use the following notations to describe the models: a graph is denoted as
G = (V,€&) where V is the set of vertices and £ the set of edges. The adjacency
matrix of G is A. N represents the number of nodes in the graph, i.e. the cardi-
nality of V. The set of neighbors of a node u is written as Nuﬂ The activation
matrix of layer [is H) € RN*P where D is the dimensionality of the layer. We
use hg) to specify the activation vector of node u at layer [. The weight matrix
at layer [is W), By convention, H(®) = X, the initial feature matrix of the
nodes. o represents an activation function, e.g. a ReLU (Rectified Linear Unit),
defined as — max(0, z).

Graph Convolutional Networks

GCNs (Graph Convolutional Networks) were introduced in [I1] in 2017 for
semi-supervised learning on graphs. The main idea is based on using spectral
graph wavelet transforms (also called spectral convolutions on graphs) and their
approximation using Chebyshev polynomials, both introduced in [§] and refined
in [2]. The authors in [I1] used a first-order approximation of the spectral con-
volutions and approximated the largest eigenvalue of the graph Laplacian to
be equal to 2, arguing that neural network would adapt during training. With
these assumptions, they defined a graph convolutional layer to be defined by the
following propagation rule

B = g (DEAD-3 HOWO) 1)

A is the adjacency matrix of the graph with added self-connections, i.e. A=
A + IN. Finally, D“ = Z_j A”
A GOCN is usually composed of several of these layers, with the activation

function of the last layer being a softmax to output probabilities.

Graph Attention Networks

Inspired by attention mechanisms in deep learning which were first developed
in natural language processing for dealing with sequences [I], GATs (Graph
Attention NeTworks) were introduced in 2018 in [20] and use the following
layer-wise propagation rule

e = (3 i) ®

vE/\fu

agg is the normalized attention coefficient at layer [of node v with respect to

u, that is, it indicates how important the features of node v are to node u. The
coefficients are obtained by computing the attention coefficients then performing

5 The neighborhood can include the node itself.

a softmax for normalization. More formally, with 65“); the attention coefficients

at layer [and a the attention mechanism, we have

o) = o (WORD, WORD))
U]
off) =) 0

1
Swen, explei)

The attention mechanism can be any function that takes as input two vectors,
with the same dimension as the product W(l)hg) and outputs a real value. For
example, a can be a feed-forward neural network.

GraphSAGE

GCN and GAT can perform both transductive and inductive learning, that is, use
the observed data to predict the behaviour of new data (transductive), or use the
observed data to infer general rules as to the behaviour of the data (inductive).
Graphs are particularly challenging for inductive learning because it requires
learning the structures of subgraphs. Contrary to GCN and GAT, GraphSAGE
(Graph SAmple and aggreGatE) was specifically designed to tackle the chal-
lenge of inductive learning [7] and was introduced in 2017.

The network uses the following forward propagation rules for layer [+ 1 and
for each node v in V

hf\lfi_l) — aggregatel ({hg),vu S Nv}) (5)
hq(]l“) — 0 (W(l)concatenate(h(l) h(l))) (6)
h(z+1)
vy _ M (7)
1+1
“h(+)H2

hj(\l/jl) is an activation vector for the neihborhood of node v. The concatenate
function concatenates the two vectors for the matrix multiplication with W,

The authors in [7] argue that the aggregator function should be symmetric
so as to be independent of the ordering of the neighbors, trainable and have
high representational capacity. An aggregator can be a simple mean aggregator,
which, when injected in Eq. [B] gives

h(l+1)a<W(l) <N|+1h(l +Zh”>> (8)

More aggregators are described, such as an LSTM one, in [7].

While the neighborhood function N : v — 2Y can be defined arbitrarily, in
practice we draw a uniform sample of fixed size from the neighbors of the node.
This draw is performed for every layer.

In order to compare GNN architectures, it is essential to have high quality
datasets and well designed benchmarks.

3 Dataset description

The first graph benchmark datasets were quite small, having only a few thousand
nodes [I7]. This posed a problem when trying to compare GNNs, because the
graphs were too small to create meaningful differences between the methods. In
the last few years, there has been a trend in trying to standardize benchmarking
of GNNs [4]. In this vein, [9] introduced an ensemble of graph datasets of varying
size and type: directed, undirected, homogeneous, heterogeneous, etc. Further-
more, they provided a benchmark framework to ease to process of comparing
methods. These datasets tackle the three types of graph tasks, which are node,
edge and graph-level property predictions. The dataset we use in this paper,
ogbn-arxiv, comes from their paper.

A leaderboard is available at https://ogb.stanford.edu/docs/leader_
nodeprop/| to see the best-performing models on obgn-arxiv. Many of the lead-
ing submissions are based on some variations of GATs. Two notable approaches
in the leaderboard are presented in [I9] and [I0]. The first one proposes to use a
GNN that spreads information further than one node to its first neighbors using
multi-hop neighborhood aggregation. The second is an approach that does not
use GNNs, but rather rely on using a multi-layer perceptron followed by two
post-processing steps that propagate errors from the training data.

ogbn-arxiv is a directed homogeneous graph. It has 169,343 nodes which
represent papers from the arXiV Computer Science repository, and 1,166,243
directed edges, which correspond to citations between papers. Each node has a
date attribute, corresponding to the year of publication, which ranges between
1991 and 202@ and a 128-dimensional feature vector. The feature vector repre-
sents the average of the word embeddings of all the words in the title and the ab-
stract of the paper, which the authors of [9] obtained by applying a WORD2VEC
[15] model that they trained on Microsoft Academic Graph (MAG) [22].

Each paper is labelled by the authors and the arXiv moderators; these labels
are assigned a number between 0 and 39, representing the 40 categories of the
arXiv CS (Computer Science) repository. Each category is denoted by two letters;
their full name can be found at https://arxiv.org/corr/subjectclasses,.

5 There are 10 papers whose publication date is before 1991, which is the year arXiv
was publicly released.

https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/
https://arxiv.org/corr/subjectclasses

In [9], the authors proposed splitting the dataset with respect to the year of
publication of the papers, on the basis that this reflects one of the real world
applications of GNNs, which is to predict the category of new papers using only
already published papers; furthermore, they argue it is a more challenging task
than just randomly splitting between train, validation and test. Thus, the split
is the following: the train set consists of all papers published before 2018; the
validation set has all the papers published in 2018; and the test comprises all
the papers from 2019 (inclusive) onwards.

4 Experiments

In this section, we use a single class classification approach. A deep analysis of
the misclassifications will lead us to explore a multilabel approach in Section

For all the experiments, we use a 24GB NVidia RTX GPU. The code is writ-
ten in Python, Pytorch and PyTorch Geometric [5]. We use the OGB (Open
Graph Benchmark) [9] package to get the ogbn-arziv dataset.

Our choice of GCN, GraphSAGE and GAT is based on the following obser-
vations: they are special cases of Message Passing Neural Networks [6] which are
one of the dominant forms of graph neural networks. Furthermore, they form
the basis of most of the leading architectures in the leaderboard on the OGB
datasets. The leaderboard is available at https://ogb.stanford.edu/docs/
leader_nodeprop/.

We train 10 instances of GCN, GraphSAGE and GAT for 500 epochs each.
Because GNNs are prone to over-smoothing when using too many layers [14],
each of our models has 3 layers with a hidden layer size of 256 units. We use
dropout to mitigate overfitting. Because GraphSAGE and GCN only handle
undirected graphs, we consider the citation network as an undirected network.
Average results of training are presented in Table [II The GAT outperforms
the other models. This is consistent with the results of the leaderboard for
ogbn-arxiv available at https://ogb.stanford.edu/docs/leader_nodeprop/,
where GAT-based models occupy the first places.

Table 1. Training results for the arXiv dataset

method validation accuracy testing accuracy

GCN 73.33 £0.09 72.06 £ 0.2
Graphsage 71.94+0.1 70.77 £ 0.26
GAT 73.66 £0.11 72.41 +0.19

In the rest of the paper, in keeping with the results obtained in our own
experiments and by other researchers, we focus on the results given by the GAT

https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/
https://ogb.stanford.edu/docs/leader_nodeprop/

model.

GAT Confusion matrix (normalized by row)

,Of 3 9(3(/77’7? 9(e Cl({9 S/ 1 06"
pf-10.0 5.0 0.0 0.0 0.0 0.0 0.0 83 9.2 0.0 0.0 0.0
ar 0.0 ‘46.0‘ 0.0 0.0 0.0 0.0 0.0 5.7 8.0 0.0 0.0 3.4
gt- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 43 24 0.2 0.0

sc- 0.0 0.0 0.00.0 0.0 0.0 0.0 2.8 1.4 0.0 0.0

-0.0 0.0 0.0 0.0 225 0.0 1.1 46.0 2.7 1.1 9.6 0.5

3
3

gr- 0.0 0.0 0.0 0.5 0.0 11.3 4.42.5 0.5 1.0 0.5

hc-0.0 0.0 0.2 0.0 0.2 0.5 20.117.2 7.1 11.311.9 0.5

True category

cv- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54 0.2 0.6 0.2
lg- 0.0 0.0 0.4 0.0 0.0 0.0 0.1 11.8 55 4.2 0.8
ai- 0.0 0.0 3.0 0.0 0.0 0.1 04 49 15.910.0 1.2
c-0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 2.0 0.9 0.0

ne-0.0 0.3 0.2 0.0 0.0 0.0 0.0 10.528.3 6.2 0.8 44.9
Predicted category

Fig. 1. Susbset of the confusion matrix

To analyze the misclassification errors made by the model, we need to go be-
yond the accuracy score and look at the confusion matrix on the test set, which
will help us see where it fails to generalize. The value at row ¢; and column c;
indicates the number of times the model has assigned the label ¢; to a node
from ¢;, divided by the total number of nodes of category ¢; in the test set. The
rows have been normalized and each one adds up to 100. The higher the values
outside the diagonal are, the more the model made mistakes. The categories
were ordered in such a way that the small classes occupy the first columns while
the middle of the matrix is for the most populated classes and the rest of the
columns represent mostly middle-sized classes. A subset of the full confusion
matrix is displayed in [I] with the categories that are discussed in the rest of the

paper.

We first observe that the size of the category in the training set, as repre-
sented by the “train size” column in Table [3]is not a sufficient indicator of poor

performance. The model achieves low accuracy on such categories as ar (Hard-
ware Architecture) and pf (Performance) but successfully classifies nodes from
gt (Computer Science and Game Theory) and sc (Symbolic Computing), despite
the fact that these categories have approximately the same number of nodes in
the training set. This suggests that some categories display more cohesiveness
than others, and that the network is able to detect this pattern.

Still on the topic of categories with little representation, we see systematic
misattribution for nodes in the mm (Multimedia) and gr (Graphics) categories,
which are classified as cv. Considering that the three subjects likely share a
similar terminology, and that the initial features of the nodes were based on the
words in the title and the abstract, there is little hope, without changing the
features, to correctly predict these classes.

Next, we are faced with subject areas that are intrinsically interdisciplinary,
which means they exploit ideas from other areas of research. The most eminent
representative of these categories is he (Human Computer Interaction). By de-
sign, HCI tends to capitalize on the advances in various fields, e.g. computer
vision, natural language processing, and study the impact, positive or negative,
they can have on users. In ogbn-arxiv, this will be reflected in two manners: hc
nodes have neighbors that can belong to other classes, and two hc nodes can
have vastly different features.

Finally, the error which is the key factor in driving down the accuracy is the
confusion of categories within a group of similar categories. This is exemplified
with the categories cv (Computer Vision), lg (Machine Learning), ai (Artificial
Intelligence), cl (Computation and Language, mostly natural language process-
ing) and ne (Neural and Evolutionary Computation). About 30% of ai nodes
in the test set are incorrectly attributed to the one of the above classes, while
20% of 1g nodes and 35% of ne nodes are similarly misclassified. All these cat-
egories mutually fuel the research of the others. The two biggest reasons for the
misclassification are a combination of two causes mentioned earlier: many nodes
from these categories share a similar terminology, e.g. papers on neural networks
have similar characteristics; and the nodes cite papers from all the areas in the

group.

Considering the overlapping themes of some categories, as well as the in-
terdisciplinary content of some papers, a multilabel classification approach is
preferable to the single label classification task. Firstly, it allows a finer grained
categorization of papers, distinguishing between papers in the robotics field that
have a computer vision component with those that have a natural language pro-
cessing component. Secondly, it helps concentrate on the bigger errors made by
the neural networks: those in which the category is not in the top predictions.

5 Multilabel classification approach

Instead of focusing on only the top prediction of the model, we retrieve the three
most likely predicted classes of our GAT model for each node in the test set.
The set of estimated probabilities is usually obtained by applying a softmax
activation function to the last layer of the neural network; in the case of multi-
class classification, to make a prediction, we simply output the category which
is associated with the highest probability. We compute the number of times the
correct category is the prediction (accuracy, or top 1), as well as the number of
times it appears in the two (top 2) or three (top 3) categories with the highest
estimated probabilities. Overall, while the model achieves 72.4% accuracy, the
right category is in the two highest predictions 87.3% of the time, a 15% increase.
In the top 3, this number rises to 92.4%. Results for each category are presented
in Table (3] alongside the relative size of the category in the training set (given
in percentage) and its population in the test set. The arXiv categories in bold
are the ones discussed in the text. Additionally, a representation of the top 3
predictions for some nodes is presented in Figure [2}

Table 2. Top 3 score on training, validation and test

dataset top 1 top 2 top 3

train 79.31 90.36 94.14
valid 73.62 87.76 92.73
test 72.27 87.25 92.36

We see that, within a group of non-mutually exclusive categories, there are
some classes that attract most of the predictions, such as the cv and cl which
are in the group of artificial intelligence related categories. These leads to poor
accuracy scores for the lg and ai classes. However, when we look at the three
highest estimated probabilities, the network gets most of the lg and ai samples
right. For example, node 1 in Figure |2| belongs to the lg category, which is the
second prediction of the model. Similarly, nodes 2, 3, 5 and 7 all belong to the
ai category, which is the second or the third prediction from the model.

Additionally, the top three predictions are either related to the true category,
or to the category of the neighbors. For example, node 1 has neighbors that
belong to the ai, 1g, cv, cl categories. This means that the model is properly
learning from the information contained in the neighbors. Nodes with neighbors
from different categories than themselves will rarely be classified in the correct
category, but the top predictions of the model will most often be related to the
content of the paper. This suggests that focusing on a single category is not
sufficient to properly classify a paper, and that a better way is to look at the
first two or three predictions to get a meaningful categorization of the paper.
Node 1 is paper from the ai category, but it cites papers from the cv category;

Table 3. Top 3 category predicted by the GAT model. The train size represents the
percentage of nodes in the training set that are from each category. The test column
indicates the number of nodes from the test set that are in each category.

subject top 1 top 2 top 3 train size (%) test subject top 1 top 2 top 3 train size (%) test

cv 91.83 98.10 98.99 10.99 10477 cy 17.13 43.12 59.33 1.12
g 69.27 91.30 96.38 7.69 10740 cg 75.72 85.62 90.42 1.64
it 90.56 96.28 97.54 17.91 2849 dm 26.02 54.65 78.81 1.71
cl 92.74 97.06 98.27 4.77 4631 pl 47.41 74.09 81.87 1.39
ai 49.14 71.13 82.68 5.70 1455 hc 20.10 36.82 52.89 0.77
ds 69.87 86.85 92.43 5.97 1414 dl 76.17 81.78 85.05 1.21
ni 55.12 84.32 91.12 4.46 1250 fl 55.45 73.18 80.00 1.02
cr 67.04 82.18 87.91 3.15 1869 sd 77.47 89.89 94.95 0.50
dc 52.73 75.12 83.07 3.23 1246 ma 6.28 27.62 62.76 0.43
lo 67.94 90.18 94.13 3.96 733 et 57.89 74.64 81.82 0.44
ro 70.91 88.77 94.63 1.83 2066 mm 22.46 52.94 66.31 0.42
si 68.40 82.61 88.18 3.14 1041 sc 83.10 88.73 88.73 0.52
gt 74.16 87.40 91.55 2.76 627 ce 28.36 44.78 52.99 0.42
sy 63.72 79.47 84.96 2.06 419 na 33.33 55.56 70.37 0.48
se 62.00 76.24 81.81 1.69 808 gr 11.33 56.16 77.34 0.22
ir 46.52 77.47 90.13 1.48 892 pf 10.00 34.17 52.50 0.26
cc 51.59 71.88 87.25 2.47 345 ms 57.83 79.52 84.34 0.30
db 63.41 74.43 83.37 1.78 481 ar 45.98 65.52 74.71 0.27
ne 44.90 64.97 82.96 1.42 628 oh 0.00 1.96 3.92 0.33
08 8.33 25.00 50.00 0.08 36 gl 0.00 0.00 0.00 0.02

654
313
269
386
622
214
220
475
239
209
187
71
134
54
203
120
83
87
51
5

thus it is likely to contain a sizable amount of information related to computer
vision, even if it is not the main theme of the paper.

We also observe that the challenges faced by interdisciplinary categories re-
main when we observe the top three predictions: the model correctly has hc in
its top three predictions in only 53% of the cases. Node 4 and node 7 in Figure
illustrate the situation. Node 1 only have 1g neighbors, while node 2 only has cv
neighbors. Furthermore, hc is not in the first three predictions of the model.

6 Conclusion and future works

In this paper we trained three common graph neural networks (GCN, Graph-
SAGE and GAT) on the ogbn-arxiv graph for node classification. While typical
classification tasks allow the objects to belong to a unique category, we found
that many misclassification errors come from the fact that some papers share
common features with several other categories that are related. This led us to
reframe the problem as a multilabel classification problem where a node might
belong to more than one category with a given probability. For instance, a paper
in the robotics category might tackle a computer vision problem, while another
one might deal with a natural language processing task. We found that consider-
ing the top three predicted classes, the real class was present in more than 92%

@)
@ ® © e\
@ @ @ @ @ | @ @ Node 3 “ 4 @
@ o Node 1@ Node 2 Ic ® ne
® 9 ® © N NS ®
© @ © | (9 ®© @ @ @)
Ol@ e ® © ©
® ® @ @
® @ © © = Nod@
@ Node|96 @ Ig :‘l {:iz:::i:;t‘;:ion
® Node 7 (V) . ® Nods 5 B others
] & >
@ ai ®
@

Fig. 2. Top 3 predictions for a few nodes in the graph. The pie chart represents the
probability assigned by the model to the the first three categories. For each node with
a piechart, the label of the first prediction is the one on top, the second prediction the
one in the middle and the third prediction the one at the bottom. The nodes without
piecharts are the neighbors of the nodes on which we do the predictions, and have their
true label written inside them.

of the cases. In addition, we observed that the categories in the top predictions
are usually related to the true category, or to the category of the neighbors of
the paper. These facts validate the multilabel approach.

Some perspectives for future works include performing a similar analysis on
bigger datasets to generalize our findings. The multilabel approach is likely to
extend to other domains, as objects in social networks or other real world data do
not usually belong exclusively to one class. Furthermore, different set of features
can be explored to improve discrimination between classes.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings (2015)

2. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks
on graphs with fast localized spectral filtering. In: Proceedings of the 30th Inter-
national Conference on Neural Information Processing Systems. pp. 3844—3852.
NIPS’16, Curran Associates Inc., Red Hook, NY, USA (Dec 2016)

10.

11.

12.

13.

14.

15.

16.

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-Training of deep
bidirectional transformers for language understanding. In: Burstein, J., Doran,
C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Vol-
ume 1 (Long and Short Papers). pp. 4171-4186. Association for Computational
Linguistics (2019). https://doi.org/10.18653/v1/n19-1423

Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y., Bresson, X.: Benchmarking
Graph Neural Networks. arXiv:2003.00982 [cs, stat] (Jul 2020)

Fey, M., Lenssen, J.E.: Fast Graph Representation Learning with PyTorch Geo-
metric. arXiv:1903.02428 [cs, stat] (Apr 2019)

Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017. Proceedings of Machine Learning Research, vol. 70,
pp. 1263-1272. PMLR (2017)

Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. pp. 1025-1035. NIPS’17, Curran Associates Inc., Red Hook,
NY, USA (Dec 2017)

Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spec-
tral graph theory. Applied and Computational Harmonic Analysis 30(2), 129-150
(Mar 2011). https://doi.org/10.1016/j.acha.2010.04.005

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., Leskovec, J.:
Open graph benchmark: Datasets for machine learning on graphs. In: Larochelle,
H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H.T. (eds.) Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, Virtual (2020)
Huang, Q., He, H., Singh, A., Lim, S.N., Benson, A.R.: Combining Label Propaga-
tion and Simple Models Out-Performs Graph Neural Networks. arXiv:2010.13993
[cs] (Nov 2020)

Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net (2017)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Communications of the ACM 60(6), 84-90 (May 2017).
https://doi.org/10.1145/3065386

Lanchantin, J., Sekhon, A., Qi, Y.: Neural Message Passing for Multi-Label Clas-
sification. arXiv:1904.08049 [cs, stat] (Apr 2019)

Li, G., Muller, M., Thabet, A., Ghanem, B.: DeepGCNs: Can GCNs Go
As Deep As CNNs? In: 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV). pp. 9266-9275. IEEE, Seoul, Korea (South) (Oct 2019).
https://doi.org/10.1109/ICCV.2019.00936

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. In: Bengio, Y., LeCun, Y. (eds.) 1lst International
Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
May 2-4, 2013, Workshop Track Proceedings (2013)

Nam, J., Kim, J., Loza Mencia, E., Gurevych, 1., Fiirnkranz, J.: Large-Scale Multi-
label Text Classification — Revisiting Neural Networks. In: Calders, T., Esposito,

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1145/3065386
https://doi.org/10.1109/ICCV.2019.00936

17.

18.

19.

20.

21.

22.

23.

24.

F., Hiilllermeier, E., Meo, R. (eds.) Machine Learning and Knowledge Discovery in
Databases, vol. 8725, pp. 437-452. Springer Berlin Heidelberg, Berlin, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44851-9,8

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Col-
lective Classification in Network Data. AI Magazine 29(3), 93 (Sep 2008).
https://doi.org/10.1609/aimag.v29i3.2157

Sperduti, A., Starita, A.: Supervised neural networks for the classification of
structures. IEEE Transactions on Neural Networks 8(3), 714-735 (May 1997).
https://doi.org/10.1109/72.572108

Sun, C., Wu, G.: Adaptive Graph Diffusion Networks with Hop-Wise Attention.
arXiv:2012.15024 [cs] (Dec 2020)

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net (2018)

Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.: CNN-RNN: A Uni-
fied Framework for Multi-label Image Classification. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 2285-2294. IEEE, Las
Vegas, NV, USA (Jun 2016). https://doi.org/10.1109/CVPR.2016.251

Wang, K., Shen, Z., Huang, C., Wu, C.H., Dong, Y., Kanakia, A.: Microsoft Aca-
demic Graph: When experts are not enough. Quantitative Science Studies 1(1),
396-413 (Feb 2020). https://doi.org/10.1162/qss,00021

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey
on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 32(1), 4-24
(2021). https://doi.org/10.1109/TNNLS.2020.2978386

Zhang, Z., Cui, P., Zhu, W.: Deep Learning on Graphs: A Survey. arXiv:1812.04202
[cs, stat] (Mar 2020)

https://doi.org/10.1007/978-3-662-44851-9_28
https://doi.org/10.1609/aimag.v29i3.2157
https://doi.org/10.1109/72.572108
https://doi.org/10.1109/CVPR.2016.251
https://doi.org/10.1162/qss_a_00021
https://doi.org/10.1109/TNNLS.2020.2978386

	Graph Neural Networks-based Multilabel Classification of Citation Network

