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Abstract. In this paper, we split the region of interest of dermoscopic
images of skin lesions in patches of different size and we analyze the
impact of the entropy of the patches on patch-based binary classification
using a convolutional neural network (CNN). Specifically, we analyze the
distribution of entropy amongst the patches and we compare the training
time of a classifier on subsets of the data with varying entropy. We find
that the classifier converges faster on patches with higher entropy. Our
entropy-based analysis is performed on skin lesion images from the ISIC
archive.
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1 Introduction

Convolutional Neural Networks (CNNs) have become one of the most
effective machine learning solutions for computer vision problems such
as classification, object detection, face recognition, etc. More specifically,
CNNs are extensively used for medical image processing tasks and their
use in medical research care. The main goal of this field is to extract
relevant clinical information or knowledge from medical images. One can
mention, for instance, computer-aided diagnosis of cancer using classifica-
tion methods [1]. Cancer is one of the leading causes of deaths worldwide
[14]. However, if the cancer is diagnosed early, when the cancer has not
spread, chances of survival are far greater than for later stages [19]. For
this reason, there has been a lot of research focused on leveraging deep
learning to improve cancer diagnosis and prognosis, especially in breast
cancer [22], skin cancer [2], and lung cancer [11].

Typically, image classification tasks take as input the entire image. How-
ever, in some situations training an image patch, that is, a subset of the
entire image, might be preferable. Not only is this less time consuming,
but it can also improve the classifier performance in some particular sit-
uations. For instance, in [9], the authors claimed that in cancer subtypes
classification, the decision is mostly based on cellular-level visual features



observed on image patch scale. Another example where patch based clas-
sification was preferred over pixel based classification is presented in [17]
where this approach was used for classification of breast histology. One
can find other applications of patch-based classification in [16] and [24].

In information theory, entropy is a measure used to quantify the level of
information contained in an object. The higher the entropy, the higher
the information content of the image is. For example, an image of ran-
dom noise will have a higher entropy that a unicolor image. Entropy is
indicative of the minimum amount of storage that is required to preserve
the full information of an object, which makes this measure particularly
useful in data compression to estimate whether the compression algo-
rithm is close to the best possible results [18].

Entropy has been successfully applied to a wide variety of tasks, includ-
ing image reconstruction where we choose the image with the highest
entropy out of all the possible images [20]. Furthermore, applications of
maximum entropy are not restricted to images but also extends to other
types of data such as text data, in which entropy is used to produce the
most uniform probability distribution given the training data [12]. Addi-
tionally, entropy has been effectively studied for image texture analysis
[25], which can also be used for texture synthesis.

In this paper, we study the role of entropy on the training time of a
neural network. We use the region of interest of the image to maximize
the relevance of the patches for the classification task. The use of patches
instead of the whole image allows us to study the influence of entropy at
different scales. To the best of our knowledge, we are the first to anal-
yse the role of entropy on patch-based binary classification. However,
it is relevant to mention that in [13], the authors have already focused
on entropy for brain tumor patch based classification. Indeed, the au-
thors resized MRI (Magnetic Resonance Imaging) images, split them in
patches, and used the entropy of each patch as a feature for the image
as well as the image moments.

The dataset we used in this study comes from the ISIC 5 archive (Interna-
tional Skin Imaging Collaboration). Because of the lethality of melanoma
cancer, the ISIC project was created to help improve skin cancer diagno-
sis via imaging data. They started an annual challenge in 2016 [7], and
from 2019 onwards, the challenges have focused on dermoscopic image
classification, with multiple diagnostic categories [15]. The researchers
who had the best results on the 2019 ISIC challenge [4] studied patch-
based classification on the HAM10000 dataset [21] in [5]. They took
multiple patches from each image and used an attention-based approach
to combine the information from the patches and classify the image.

The paper is organized as follows: in Section 2 we describe the datasets
and data pre-processing, analyze their entropy and we introduce the

5 The data is publicly available at https://www.isic-archive.com
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network architecture we used. Next, Section 3 shows the experimental
results. Finally, Section 4 presents the conclusion and perspectives of this
work.

2 Proposed method

2.1 Dataset description and pre-processing

The ISIC archive database (see [15]) contains images of skin lesions which
can be benign or malignant; other images can also have an unknown sta-
tus. The image resolution varies across the datasets. The archive also
has an API 6 which can be used to get information about images or to
retrieve lesion masks created by expert users. Our goal is to perform bi-
nary classification using patches of images. Our target variable has two
labels7 indicating whether the lesion is benign or malignant.

ISIC archive

Download images

Download masks

Select all malignant images
+

sample same number of benign images

Split the region of interest
in square patches

Classifiy
on subset of patches

Fig. 1. Data pre-processing workflow

(a) Image (b) Mask

Fig. 2. Example of a malignant skin lesion

All the data pre-processing steps are described in Figure 1:

6 https://isic-archive.com/api/v1
7 Originally, the ISIC challenge had more refined categories. In this paper we use only
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(a) 32 × 32 (b) 64 × 64 (c) 128 × 128 (d) 256 × 256

Fig. 3. Example of patches of size (a) 32×32, (b) 64×64, (c) 128×128, (d) 256×256,
from Figure 2

1. First, using the API from the ISIC archive, we download all the
images which have a mask.

2. Second, we take all the malignant images and we sample the same
quantity of benign images from all the benign images with a mask.

3. Next, for each image, we take the region of interest, that is, the part
where the lesion is, which is obtained from the mask, and we split
this region in square patches of size 32 × 32, 64 × 64, 128 × 128 and
256 × 256. Figure 2 shows an example of an image and its mask,
with patches of different size taken from the same image in Figure
3. Table 1 indicates the total number of patches for each patch size.
Since we took the same number of malignant and benign images,
we have an imbalanced dataset with more malignant patches than
benign ones. This is due to the fact that malignant lesions are often
captured in higher resolution, because it is more important to get
the best image quality when analyzing cancerous lesions than it is
for benign ones.

4. Finally, we perform binary classification on patches.

Table 1. Number of patches for different patch sizes

patch size number of patches

32 × 32 4,886,969
64 × 64 1,173,052

128 × 128 270,821
256 × 256 58,253

2.2 Entropy

We are interested in the study of the behavior of the Shannon entropy
[18] of the images. The formula used for the calculation of entropy is the



following:

H = −
M∑
k=0

pk log2(pk) (1)

where M is the highest intensity of a pixel (in our case, 255), and pk is the
probability associated with the pixel intensity k in the grayscale image.
In practice, the entropy is computed using histograms to estimate the
probabilities. The entropy can take values between 0 and log2(255) ≈ 8.
Although the images in the dataset are in the RGB format, the entropy
is computed on the grayscale version of the images. Our choice was mo-
tivated by the fact that there is no consensus on how to compute the
entropy of an RGB image: Equation 1 does not have a canonical general-
ization to RGB images, while RGB conversion to grayscale is standard-
ized in the ITU-R Recommendation BT.601-2.

Figure 4 shows the distribution of entropy amongst the patches for dif-
ferent patch sizes.

(a) (b)

(c) (d)

Fig. 4. Distribution of patch entropy. (a)-(d) are taken for square patches of size 32,
64, 128 and 256 pixels.



Table 2 shows the mean, standard deviation and some quantiles of en-
tropy. We observe that, as the patch size grows, so does the entropy.
This is expected because the more pixels we have, the more likely they
are to have different intensities, which lead to a higher entropy. Also,
the entropy for bigger patch sizes is slightly more centered around the
mean, which may be due to the fact that bigger patch sizes will average
some of the more extreme patches of smaller size. For example, instead
of having multiple small patches of low and high entropy, a bigger patch
containing all the small patches will have a more average entropy.

Table 2. Entropy statistics

quantile
patch size mean standard deviation 15 42.5 57.5 85

32 3.974 0.779 3.247 3.85 4.104 4.71
64 4.456 0.765 3.75 4.335 4.588 5.191
128 4.903 0.747 4.223 4.795 5.047 5.633
256 5.319 0.735 4.66 5.229 5.475 6.029

We are interested in the impact of the entropy behaviour on the training
of a classifier: whether it is faster to train on a dataset with low entropy
than with a dataset with standard entropy; and whether a dataset with
higher entropy is harder to train on. We split the created patches in three
groups for the four groups of patches:

– one containing the patches with entropy below the 15-th quantile,
referred to as low.

– one with the patches entropy above the 85-th quantile, referred to
as high and

– the last one with patches having entropy between the 42.5-th and
57.5-th quantiles, referred to as intermediate. Our choice for the
quantile values is motivated by having the entropy be equally distant
from the other groups, and keeping the same number of samples to
make time comparisons meaningful.

We do this for each patch size, e.g. 32×32, 64×64, 128×128, 256×256.

2.3 Network architecture and tuning parameters

Following [23] and [3] who compared classifiers for the same task and
dataset, we use a ResNet50 for the classification. ResNet50 [8], is a 50-
layer convolutional neural network, which contains residual units be-
tween convolutional blocks (stacks of convolutional layers) with identity
mappings interspersed, to help propagate the gradient and mitigate the
problem of vanishing and exploding gradients [6].



Though ResNets can be arbitrary deep, provided we have the computing
resources to train the model, e.g. using 101 or 152 layers, we followed [23]
and used the 50-layer version. Since we are interested in binary classifi-
cation, e.g. whether the lesion is benign or malignant, we remove the last
layer of the network, designed for multiclass classification, and replace
it with a max pooling layer followed by a Dense layer with a sigmoid
activation.

The optimizer used for the model is the Adam optimizer [10] with a
learning rate of 0.001. We use a binary cross-entropy loss for the train-
ing.

The model is trained for 10 epochs, with early stopping if the validation
loss stops decreasing after 3 consecutive epochs.

Each dataset is split in the following way for training: 90% for training,
of which 20% goes to validation, and 10% for testing.

3 Results

All the experiments were performed on a device with a 3.60 GhZ Intel
CPU, 32Gb of RAM and an NVidia Titan XP, running on Ubuntu. The
code was written in Python and Tensorflow. The computation of the
entropy was done using Pillow.
To account for the fact that a neural network may take more time to con-
verge based on the random initialization of the parameters, we train 10
instances of a ResNet50 on each dataset. We display the 30-th quantile,
the median and the 70-th quantile of the training time of the instances
in Table 3.
We see that that the dataset with the highest entropy tends to be the
fastest to converge. Since a higher entropy usually indicates that more
information is present in the patch, we could expect the neural network
to take longer to train. Conversely, a dataset with lower entropy would
train faster because the patches would have less discriminating features,
and the network would quickly classify them.
A possible explanation for this discrepancy is that patches with higher
entropy might share a similar structure or have patterns not present for
other patches, and thus are more recognizable by the network, while
patches with lower entropy might have less salient features, which makes
it harder for the classifier to classify them.

Concerning the training for the dataset with intermediate entropy, it
seems to take longer to converge for smaller patch sizes compared to
training on datasets with more extreme entropy, but reaches similar
speeds in comparison with the other datasets when we increase the patch
size. A reason for this could be that, for lower patch sizes, patches with
average entropy might be more diverse than patches with lower or higher
entropy, and the network will require more time to analyze the patterns.



Table 3. Quantiles for the training time on datasets with varying entropy

Quantile of training time (in seconds)
patch size entropy 30 50 (median) 70

32 high 1350.7 2013.2 2781.4
32 intermediate 2000.4 2854.0 2855.3
32 low 1534.9 2906.7 3078.5

64 high 291.0 382.9 441.9
64 intermediate 331.0 402.3 498.8
64 low 290.6 338.3 414.2

128 high 155.0 204.6 220.0
128 intermediate 174.6 235.2 281.3
128 low 204.8 255.0 255.4

256 high 142.4 152.2 189.7
256 intermediate 171.3 171.8 204.8
256 low 189.6 226.4 226.5

When the patches are bigger, a patch can be composed of smaller zones
which vary greatly in entropy, but have an average entropy when we look
at the entirety of the patch. Therefore, these patches would be easier to
classify, which would lead to a faster training time.

4 Conclusion and future works

We studied the influence of entropy on the training time of a convo-
lutional neural network applied to patch-based classification. We found
that the CNN converges faster when using datasets with higher entropy,
which might be due to the presence of patterns on these patches the
network can detect. We also observe that performance of datasets with
average entropy tend to improve, in comparison with the other datasets,
when the patch size increases.

Some perspectives to this work can be to explore the use of segmentation
to obtain the regions of interest, increasing the number of images we can
work with, and see if the results are comparable. Another possibility can
be to analyze the effects of resizing images on their entropy to quantify
the loss of information, and the impact it can have on classification using
resized images.
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