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Résumé. La modularisation de grands graphes ou recherche de communautés
est abordée comme l’optimisation d’un critère de qualité, l’un des plus utilisés
étant la modularité de Newman-Girvan. D’autres critères, ayant d’autres pro-
priétés, aboutissent à des solutions différentes. Dans cet article, nous présentons
une réécriture relationnelle de six critères linéaires: Zahn-Condorcet, Owsiński-
Zadrożny, l’Ecart à l’Uniformité, l’Ecart à l’Indétermination et la Modularité
Equilibrée. Nous utilisons une version générique de l’algorithme d’optimisation
de Louvain pour approcher la partition optimale pour chaque critère sur des ré-
seaux réels de différentes tailles. Les partitions obtenues présentent des caracté-
ristiques différentes, concernant notamment le nombre de classes. Le formalisme
relationnel nous permet de justifier ces différences d’un point de vue théorique.
En outre, cette notation permet d’identifier facilement les critères ayant une li-
mite de résolution (phénomène qui empêche en pratique la détection de petites
communautés sur de grands graphes). Une étude de la qualité des partitions trou-
vées dans les graphes synthétiques LFR permet de confirmer ces résultats.

1 Introduction
Networks are studied in numerous contexts such as biology, sociology, online social net-

works, marketing, etc. Graphs are mathematical representations of networks, where the entities
are called nodes and the connections are called edges. Very large graphs are difficult to analyse
and it is often beneficial to divide them in smaller homogeneous components easier to handle.
The process of decomposing a network has received different names : graph clustering (in data
analysis), modularization, community structure identification. The clusters can be called com-
munities or modules ; in this paper we use those words as synonyms.

1. This work is supported by REQUEST project between Thales and Paris 13 University.
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Assessing the quality of a graph partition requires a modularization criterion. This function
will be optimized to find the best partition. Various modularization criteria have been formula-
ted in the past to address different practical applications. Those criteria differ in the definition
given to the notion of community or cluster.

To understand the differences between the optimal partitions obtained by each criterion we
show how to represent them using the same basic formalism. In this paper we use the Mathe-
matical Relational Analysis (MRA) to express six linear modularization criteria. Linear criteria
are easy to handle, for instance, the Louvain method can be adapted to linear quality functions
(see Campigotto et al. (2014)). The six criteria studied are : the Newman-Girvan modularity,
the Zahn-Condorcet criterion, the Owsiński-Zadrozny criterion, the Deviation to Uniformity,
the Deviation to Indetermination index and the Balanced Modularity (details in section 3). The
relational representation allows to understand the properties of those modularization criteria.
It allows to easily identify the criteria suffering from a resolution limit, first discussed by For-
tunato et Barthelemy (2006). We will complete this theoretical study by some experiments on
real and synthetic networks, demonstrating the effectiveness of our classification.

This paper is organized as follows : Section 2 presents the Mathematical Relational Ana-
lysis approach, we introduce the property of balance for linear criteria and its relation to the
property of resolution limit. In Section 3, we present the six linear modularization criteria in the
relational formalism. Next, Section 4 presents some experiments on real and artificial graphs
to confirm the theoretical properties found previously.

2 Relational Analysis approach

There is a strong link between the Mathematical Relational Analysis 2 and graph theory : a
graph is a mathematical structure that represents binary relations between objects belonging
to the same set. Therefore, a non-oriented and non-weighted graph G = (V,E), with N = |V |
nodes and M = |E| edges, is a binary symmetric relation on its set of nodes V represented by
its adjacency matrix A as follows :

aii′ =

{
1 if there exists an edge between i and i′ ∀(i, i′) ∈ V × V
0 otherwise

(1)

We denote the degree di of node i the number of edges incident to i. It can be calculated
by summing up the terms of the row (or column) i of the adjacency matrix : di =

∑
i′ aii′ =∑

i′ ai′i = ai. = a.i. We denote δ = 2M
N2 the density of edges of the whole graph.

Partitioning a graph implies defining an equivalence relation on the set of nodes V , that
means a symmetric, reflexive and transitive relation. Mathematically, an equivalence relation
is represented by a square matrix X of order N = |V |, whose entries are defined as follows :

2. For more details about Relational Analysis theory see Marcotorchino et Michaud (1979) and Marcotorchino
(1984).
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xii′ =

{
1 if i and i′ are in the same cluster ∀(i, i′) ∈ V × V
0 otherwise

(2)

Modularizing a graph implies to find X as close as possible to A. A modularization cri-
terion F (X) is a function which measures either a similarity or a distance between A and X.
Therefore, the problem of modularization can be written as a function to optimize F (X) where
the unknown X is subject to the constraints of an equivalence relation 3.

We define as well X̄ and Ā as the inverse relation of X and A respectively. Their entries
are defined as x̄ii′ = 1 − xii′ and āii′ = 1 − aii′ respectively. In the following we denote
κ the optimal number of clusters, that means the number of clusters of the partition X which
maximizes the criterion F (X).

2.1 Linear balanced criteria
Every linear criterion is an affine function of X, therefore in relational notation it can be

written as :

F (X) =

N∑
i=1

N∑
i′=1

φ(aii′)xii′ +K, (3)

where the function φ(aii′) depends only on the original data (for instance the adjacency
matrix). In the following we will use K to denote any constant depending only on the original
data.

Definition 1 (Property of linear balance) A linear criterion is balanced if it can be
written in the following general form :

F (X) =

N∑
i=1

N∑
i′=1

φ(aii′)xii′ +
N∑
i=1

N∑
i′=1

φ̄(aii′)x̄ii′ +K. (4)

where φ(.) and φ̄(.) are non negative functions depending only on the original data
and verifying

∑N
i=1

∑N
i′=1 φii > 0 and

∑N
i=1

∑N
i′=1 φ̄ii > 0.

3. In fact, the problem of modularization can be written in the general form :

Max
X

(F (X))

subject to the constraints of an equivalence relation :

xii′ ∈ {0, 1} Binary

xii = 1 ∀i Reflexivity

xii′ − xi′i = 0 ∀(i, i′) Symmetry

xii′ + xi′i′′ − xii′′ ≤ 1 ∀(i, i′, i′′) Transitivity

The exact solving of this 0 − 1 linear program due to the size of the constraints is impractical for big networks.
So, heuristic approaches are the only reasonable way to proceed.
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By replacing x̄ by its definition 1− xii′ , equation (4) can be rewritten as follows :

F (X) =

N∑
i=1

N∑
i′=1

(φii′ − φ̄ii′)xii′ +K. (5)

From this expression we can deduce the importance of the property of balance for linear
criteria. If the criterion is a function to maximize, the presence and/or absence of the terms φii′
and φ̄ii′ has the following impact on the optimal solution :

— If φ̄ii′ = 0∀i, i′ the solution that maximizes F (X) is the partition where all nodes are
clustered together in a single cluster, so κ = 1 and xii′ = 1 ∀(i, i′) and F (X) =∑N

i=1

∑N
i′=1 φii′ .

— If φii′ = 0∀i, i′ then the optimal solution that maximizes F (X) is the partition where
all nodes are separated, so κ = N and xii′ = 0 ∀ i 6= i′ and xii = 1 ∀i therefore
F (X) =

∑N
i=1

∑N
i′=1 φ̄ii.

In other words, the optimization of a linear criterion who does not verify the property of
balance will either cluster all the nodes in a single cluster or isolate each node in its own
cluster, therefore forcing the user to fix the number of clusters in advance.

We can deduce from the previous paragraphs that the values taken by the functions φ and
φ̄ create a sort of balance between the fact of generating as many clusters as possible, κ = N ,
and the fact generating only one cluster, κ = 1.

In the following we will call the quantity
∑N

i=1

∑N
i′=1 φ(aii′)xii′ the term of positive

agreements and the quantity
∑N

i=1

∑N
i′=1 φ̄(aii′)x̄ii′ the term of negative agreements.

2.2 Different levels of balance
We define two levels of balance for all linear balanced criterion :

Definition 2 (Property of local balance) A balanced linear criterion whose functions
φii′ and φ̄ii′ satisfy

φii′ + φ̄ii′ = KL ∀ (i, i′)

where KL is a constant depending only upon the pair (i, i′) (therefore not depending
on global properties of the graph) has the property of local balance.

Some remarks about definition 2 :
— Since KL depends only on properties of the pair (i, i′) , that is local properties, we call

this property local balance.
— When we talk about global properties we refer to the total number of nodes, the total

number of edges or other properties describing the global structure of the graph.
— In the particular case of local balance where KL is constant ∀(i, i′), that is φii′ and

φ̄ii′ sum up to a constant, we have the following situation : whereas φii′ increases φ̄ii′
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decreases and vice versa.

Let us consider the special case where φ(aii′) = aii′ , the general term of the adjacency
matrix. A null model is a graph with the same total number of edges and nodes and where
the edges are randomly distributed. Let us denote the general term of the adjacency matrix of
this random graph φ̄(aii′). A criterion based on a null model considers that a random graph
does not have community structure. The goal of such a criterion is to maximize the deviation
between the real graph, represented by φ(aii′) and the null model version of this graph, repre-
sented by φ̄(aii′) as shown in equation (5).

That implies
∑N

i=1

∑N
i′=1 φii′ =

∑N
i=1

∑N
i′=1 φ̄ii′ = 2M . This constraint implies that

φ̄ii′ depends upon the total number of edges M . Consequently, the decision of clustering toge-
ther two sub-graphs depends on a characteristic of the whole network and the criterion is not
scale invariant because it depends on a global property of the graph.

The definition of null model for linear criteria can be generalized as follows :
Definition 3 (Criterion based on a null model) A balanced linear criterion whose
functions φii′ and φ̄ii′ satisfy the following conditions :

N∑
i=1

N∑
i′=1

φii′ =

N∑
i=1

N∑
i′=1

φ̄ii′

φii′ + φ̄ii′ = g(KG) ∀ (i, i′)

where g(KG) is a function depending on global properties of the graph KG is a crite-
rion based on a null model.
KG can be for example the total number of edges or nodes. We can deduce from definitions

2 and 3 that a linear criterion can not be local balanced and based on a null model at the same
time.

In the particular case where φ̄ decreases if the size of the network increases, it becomes
negligible for large graphs. As explained previously, if this term tends to zero, the optimization
of the criterion will tend to put together the nodes more easily. For instance, a single edge
between two sub-graphs would be interpreted by the criterion as a sign of a strong correlation
between the two clusters, and optimizing the criterion would lead to the merge of the two clus-
ters. Such a criterion is said to have a resolution limit.

The resolution limit was introduced by Fortunato et Barthelemy (2006), where the authors
studied the resolution limit of the modularity of Newman-Girvan. They demonstrated that mo-
dularity optimization may fail to identify modules smaller than a scale which depends on global
characteristics of the graph even weakly interconnected complete graphs, which represent the
best identifiable communities, would be merged by this kind of optimization criteria if the net-
work is sufficiently large. According to Kumpula et al. (2007) the resolution limit is present
in any modularization criterion based on global optimization of intra-cluster edges and extra-
community links and on a comparison to any null model.
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In section 4 we will show how criteria having a resolution limit fail to identify certain
groups of densely connected nodes.

3 Modularization criteria in relational notation

Graph clustering criteria depend strongly on the meaning given to the notion of commu-
nity. In this section, we describe six linear modularization criteria and their relational coding
in Table 1. We assume that the graphs we want to modularize are scale-free, that means that
their degree distribution follows a power law.

1. The Zahn-Condorcet criterion (1785, 1964) : C.T. Zahn (see Zahn (1964)) was the
first author who studied the problem of finding an equivalence relation X, which best
approximates a given symmetric relation A in the sense of minimizing the distance of
the symmetric difference. However the criterion defined by Zahn corresponds to the
dual Condorcet’s criterion (see Condorcet (1785)) introduced in Relational Consensus
and whose relational coding is given in Marcotorchino et Michaud (1979). This crite-
rion requires that every node in each cluster be connected to at least as half as the total
nodes inside the cluster. Consequently, for each cluster the fraction of within cluster
edges is at least 50% (see Conde-Céspedes (2013) for the demonstration).

2. The Owsiński-Zadrożny criterion (1986) (see Owsiński et Zadrożny (1986)) it is a
generalization of Condorcet’s function. It has a parameter α, which allows, according
to the context, to define the minimal percentage of required within-cluster edges : α.
For α = 0.5 this criterion is equivalent to Condorcet’s criterion. The parameter α de-
fines the balance between the positive agreements term and the negative agreements
term. For each cluster the density of edges is at least α% (see Conde-Céspedes (2013)).

3. The Newman-Girvan criterion (2004) (see Newman et Girvan (2004)) : It is the best
known modularization criterion, called sometimes simply modularity. It relies upon a
null model. Its definition involves a comparison of the number of within-cluster edges
in the real network and the expected number of such edges in a random graph where
edges are distributed following the independence structure (a network without regard to
community structure). In fact, the modularity measures the deviation to independence.
As mention in the previous section, this criterion, based on a null model and it has a
resolution limit (see Fortunato et Barthelemy (2006)). In fact, as the network becomes
larger M −→ ∞, the term φ̄ii′ = ai.a.i′

2M tends to zero for since the degree distribution
follows a power law.

4. The Deviation to Uniformity (2013) This criterion maximizes the deviation to the
uniformity structure, it was proposed in Conde-Céspedes (2013). It compares the num-
ber of within-cluster edges in the real graph and the expected number of such edges
in a random graph (the null model) where edges are uniformly distributed, thus all the
nodes have the same degree equal to the average degree of the graph. This criterion is
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based on a null model and it has a resolution limit. indeed δ −→ 0 as N −→∞.

5. The Deviation to Indetermination (2013) Analogously to Newman-Girvan function,
this criterion compares the number of within-cluster edges in the real network and the
expected number of such edges in a random graph where edges are distributed follo-
wing the indetermination structure 4 (a graph without regard to community structure),
introduced in Marcotorchino (2013) and Marcotorchino et Conde-Céspedes (2013).
The Deviation to Indetermination is based on a null model, therefore it has a resolu-
tion limit.

6. The Balanced modularity (2013) This criterion, introduced in Conde-Céspedes et
Marcotorchino (2013), was constructed by adding to the Newman-Girvan modularity
a term taking into account the absence of edges Ā. Whereas Newman-Girvan modula-
rity compares the actual value of aii′ to its equivalent in the case of a random graph
ai.a.i′
2M , the new term compares the value of āii′ to its version in case of a random graph

(N−ai.)(N−a.i′ )
N2−2M . It is based on a null model and it has a resolution limit.

Criterion Relational notation

Zahn-Condorcet
(1785, 1964)

FZC(X) =

N∑
i=1

N∑
i′=1

(aii′xii′ + āii′ x̄ii′)

Owsiński - Zadrożny
(1986)

FZOZ
(X) =

N∑
i=1

N∑
i′=1

((1− α)aii′xii′ + αāii′ x̄ii′)

with 0 < α < 1

Newman-Girvan
(2004)

FNG(X) =
1

2M

N∑
i=1

N∑
i′=1

(
aii′ −

ai.a.i′

2M

)
xii′

Deviation to Unifor-
mity
(2013)

FUNIF(X) =
1

2M

N∑
i=1

N∑
i′=1

(
aii′ −

2M

N2

)
xii′

Deviation to Indeter-
mination (2013)

FDI(X) =
1

2M

N∑
i=1

N∑
i′=1

(
aii′ −

ai.
N
− a.i′

N
+

2M

N2

)
xii′

The Balanced Modu-
larity (2013)

FBM (X) =

N∑
i=1

N∑
i′=1

(
(aii′ − Pii′)xii′ + (āii′ − P̄ii′)x̄ii′

)
where Pii′ = ai.a.i′

2M and P̄ii′ =
(
āii′ − (N−ai.)(N−a.i′ )

N2−2M

)
TABLE 1 – Relational notation of linear modularity functions.

4. There exists a duality between the independence structure and the indetermination structure (see Marcotorchino
(1984), Marcotorchino (1985) and Ah-Pine et Marcotorchino (2007)).
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The six linear criteria of Table 1 verify the property of balance, so it is not necessary to fix
in advance the number of clusters, more specifically :

General balance
Criterion Local

Balance
Null
model

Comment

Zahn-Condorcet X φii′ + φ̄ii′ = aii′ + āii′ = 1.
Owsiński-Zadrożny X φii′ + φ̄ii′ = (1− α)aii′ + αāii′ .

Newman-Girvan X
N∑
i=1

N∑
i′=1

φ̄ii′ =

N∑
i=1

N∑
i′=1

ai.a.i′

2M
= 2M .

Deviation to Unifor-
mity

X
N∑
i=1

N∑
i′=1

φ̄ii′ =

N∑
i=1

N∑
i′=1

2M

N2
= 2M

Deviation to Indeter-
mination

X
N∑
i=1

N∑
i′=1

(
ai.
N

+
a.i′

N
− 2M

N2

)
= 2M

Balanced modularity X
N∑

i,i′=1

N∑
i′=1

p̄ii′ =

N∑
i=1

N∑
i′=1

āii′ = N2 − 2M

TABLE 2 – Balance Property for Linear criteria.

From Tables 1 and 2 one can easily deduce that for the criteria having a resolution limit the
quantity φ̄ii′ decreases when the size of the graph becomes larger.

4 Tests with real and artificial networks
We modularized six real networks of different sizes : Jazz (Gleiser et Danon (2003)), Inter-

net (Hoerdt et Magoni (2003)), Web nd.edu (Albert et al. (1999)), Amazon (Yang et Leskovec
(2012) 5) and Youtube (Mislove et al. (2007)). We ran a generic version of Louvain Algorithm
(see Campigotto et al. (2014) and Blondel et al. (2008)) until achievement of a stable value of
each criterion. The number of clusters obtained for each network is shown in Table 3.

Table 3 shows that the Zahn-Condorcet and Owsiński- Zadrożny criteria generate many
more clusters than the other criteria having a resolution limit, for which the number of clusters
is rather comparable. Moreover, this difference increases with the network size. Notice that the
number of clusters for the Owsiński- Zadrożny criterion decreases with α, that is the minimal
required fraction of within-cluster edges, so the criterion becomes more flexible.

Only ground-truth overlapping communities are defined on these previuos real networks.
This fact makes difficult to judge the quality of the obtained partitions. That si why we genera-
ted five benchmark LFR graphs (see Lancichinetti et al. (2008)) of different sizes 1000, 5000,
10000, 100000 and 500000. The input parameters are the same as those considered in Lanci-
chinetti et Fortunato (2009). The average degree is 20, the maximum degree 50, the exponent

5. the data was taken from http://snap.stanford.edu/data/com-Amazon.html.
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Network Jazz Internet Web nd.edu Amazon Youtube
N ∼ 198 70k 325k 334k 1M
M ∼ 3k 351k 1M 925k 3M
δ 0,14 1,44 · 10−04 2,77 · 10−05 1,65 · 10−05 4,64 · 10−06

Criterion κ κ κ κ κ
ZC 38 40 123 201 647 161 439 878 849
OZ α = 0.4 34 30 897 220 967 121 370 744 680
OZ α = 0.2 23 24 470 184 087 77 700 601 800
UNIF 20 173 711 265 51 584
NG 4 46 511 250 5 567
DI 6 39 324 246 13 985
BM 5 41 333 230 6 410

TABLE 3 – Ref : Zahn-Condorcet (ZC), Deviation to Uniformity (UNIF), Newman-Girvan
(NG), Deviation to Indetermination(DI) and Balanced Modularity (BM).

of the degree distribution is -2 and that of the community size distribution is -1. In order to
test the existence of resolution limit we chose small communities sizes, ranging from 10 to 50
nodes, and a low mixing parameter, 0.10. So, the communities are clearly defined. Figure 1
shows the average number of clusters for 100 runs of the generic Louvain algorithm.
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FIGURE 1 – Average number of cluster for artificial LFR graphs (logarithmic scale).

Figure 1 shows clearly the difference between the behaviour of those criteria having a re-
solution limit (NG, DU, DI and BM) and the behaviour of criteria locally defined (ZC and
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OZ). As the size of the network increases the four criteria suffering from resolution-limit de-
tect fewer clusters than those predefined. The number of clusters is rather comparable for these
four functions, one reason can be the fact that the term of negative agreements tends to zero
when the network gets bigger. Conversely, the criteria locally defined identified more clusters
than those predefined, specially ZC. The criterion which best approaches the real number of
clusters is OZ with α = 0.2. Figure 2 shows the average Normalized Mutual Information for
the partitions in Figure 1.
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FIGURE 2 – The Average Normalized Mutual Information (NMI) on the graphs in 1.

Figure 2 shows that the average NMI decreases with the network size for criteria having a
resolution limit. The criterion with the highest NMI is OZ with α = 0.2 which guarantees an
within-cluster density of 20%.

5 Conclusions

We presented six linear modularization criteria in relational notation, Zahn-Condorcet,
Owsiński- Zadrożny, the Newman-Girvan modularity, the Deviation to Uniformity index, the
Deviation to Indetermination index and the Balanced-Modularity. This notation allowed us to
easily identify the criteria suffering from a resolution limit. We found that the first two criteria
had a local definition whereas the others, based on a null model, had a resolution limit. These
findings were confirmed by modularizing real and artificial graphs using a generic version of
the Louvain algorithm. We compared the number of clusters found by the six criteria and the
Normalized Mutual information for artificial graphs. The results showed that those criteria ba-
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sed on a local definition had a better performance than those based on a null model when the
size of the graph increases.
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Summary
The modularization of large graphs or community detection in networks is usually ap-

proached as an optimization problem of a quality function or criterion, for instance, the mod-
ularity of Newman-Girvan. There exist other clustering criteria, with their own properties
leading to different solutions. In this paper we present six linear modularization criteria in rela-
tional notation such as the Newman-Girvan modularity, Zahn-Condorcet, Owsiński- Zadrożny,
the Deviation to Uniformity index, the Deviation to Indetermination index and the Balanced-
Modularity. We use a generic version of Louvain algorithm to approach the optimal partition
of the criteria with real networks of different sizes. We found that those partitions present
important differences concerning the number of clusters. The relational formalism allows us
to justify these differences from a theoretical point of view. Moreover, this notation allows to
easily identify the criteria having a resolution limit (a phenomenon which causes the criterion
to fail to identify modules smaller than a given scale). This finding is confirmed in artificial
benchmark LFR graphs.


