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Abstract The modularization of large graphs or community detection in networks
is usually approached as an optimization problem of a quality function or criterion,
for instance, the modularity of Newman-Girvan. There exist other clustering crite-
ria, with their own properties leading to different solutions. In this paper we present
six linear modularization criteria in relational notation such as the Newman-Girvan
modularity, Zahn-Condorcet, Owsiński- Zadrożny, the Deviation to Uniformity in-
dex, the Deviation to Indetermination index and the Balanced-Modularity. We use a
generic version of Louvain algorithm to approach the optimal partition of the crite-
ria with real networks of different sizes. We have found that those partitions present
important differences concerning the number of clusters. The relational formalism
allows us to justify these differences from a theoretical point of view. Moreover,
this notation enables to easily identify the criteria having a resolution limit (a phe-
nomenon which causes the criterion to fail to identify modules smaller than a given
scale). This finding is confirmed in artificial benchmark LFR graphs.
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1 Introduction

Networks are studied in numerous contexts such as biology, sociology, online so-
cial networks, marketing, etc. Graphs are mathematical representations of networks,
where the entities are called nodes and the connections are called edges. Very large
graphs are difficult to analyse and it is often profitable to divide them in smaller
homogeneous components easier to handle. The process of decomposing a network
has received different names: graph clustering (in data analysis), modularization,
community structure identification. The clusters can be called communities or mod-
ules; in this paper we use those words as synonyms.

Assessing the quality of a graph partition requires a modularization criterion.
This function will be optimized to find the best partition. Various modularization
criteria were formulated in the past to address different practical applications. Those
criteria differ in the definition given to the notion of community or cluster.

To understand the differences between the optimal partitions obtained by each
criterion we show how to represent them using the same basic formalism. In this
paper we use the Mathematical Relational Analysis (MRA) to express six linear
modularization criteria. Linear criteria are easy to handle, for instance, the Louvain
method can be adapted to linear quality functions (see [Campigotto et al., 2014]).
The six criteria studied are: the Newman-Girvan modularity, the Zahn-Condorcet
criterion, the Owsiński-Zadrozny criterion, the Deviation to Uniformity, the Devi-
ation to Indetermination index and the Balanced Modularity (details in section 3).
The relational representation makes clear the properties of those modularization cri-
teria. It allows to easily identify the criteria suffering from a resolution limit, first
discussed by [Fortunato and Barthelemy, 2006]. We will complete this theoretical
study by some experiments on real and synthetic networks, demonstrating the effec-
tiveness of our classification.

In this paper, we deal only with linear criteria. Nevertheless, it is impor-
tant to mention that thanks to the formalism of the MRA it is also possible
to express non-linear criteria in relational notations. For instance, we can
mention some very well-known criteria such as the Mancoridis-Gansner crite-
rion (see [Mancoridis et al., 1998]) in cluster-programming, the Ratio-Cuts by
[Wei and Cheng, 1989], the Michalski criterion (see [Michalski and Stepp, 1983]
and its relational notation given in [Decaestecker, 1992]), etc. The interested reader
can see [Conde-Céspedes and Marcotorchino, 2012] and [Conde-Céspedes, 2013].

This paper is organized as follows : Section 2 presents the Mathematical Rela-
tional Analysis approach and introduces the property of balance for linear criteria
and its relation to the property of resolution limit. In Section 3, six linear modular-
ization criteria in the relational formalism are formulated. Next, Section 4 discusses
some experiments on real and artificial graphs to confirm the theoretical properties
found previously.
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2 Relational Analysis approach

There is a strong link between the Mathematical Relational Analysis1 and graph the-
ory: a graph is a mathematical structure that represents binary relations between
objects belonging to the same set. Therefore, a non-oriented and non-weighted
graph G = (V,E), with N = |V | nodes and M = |E| edges, is a binary symmetric
relation on its set of nodes V represented by its adjacency matrix A as follows:

aii′ =

{
1 if there exists an edge between i and i′ ∀(i, i′) ∈V ×V
0 otherwise

(1)

We denote the degree di of node i the number of edges incident to i. It can be
calculated by summing up the terms of the row (or column) i of the adjacency ma-
trix: di = ∑i′ aii′ = ∑i′ ai′i = ai. = a.i. We denote δ = 2M

N2 the density of edges of the
whole graph.

Partitioning a graph implies defining an equivalence relation on the set of nodes
V , that means a symmetric, reflexive and transitive relation. Mathematically, an
equivalence relation is represented by a square matrix X of order N = |V |, whose
entries are defined as follows:

xii′ =

{
1 if i and i′ are in the same cluster ∀(i, i′) ∈V ×V
0 otherwise

(2)

Modularizing a graph implies to find X as close as possible to A. A modulariza-
tion criterion F(X) is a function which measures either a similarity or a distance
between A and X. Therefore, the problem of modularization can be written as a
function to optimize F(X) where the unknown X is subject to the constraints of an
equivalence relation. In fact, the problem of modularization can be written in the
general form:

Max
X

(F(X)) (3)

subject to the constraints of an equivalence relation:

xii′ ∈ {0,1} Binary
xii = 1 ∀i Reflexivity

xii′ − xi′i = 0 ∀(i, i′) Symmetry
xii′ + xi′i′′ − xii′′ ≤ 1 ∀(i, i′, i′′) Transitivity

The exact solving of this 0−1 linear program due to the size of the constraints is
impractical for big networks. So, heuristic approaches are the only reasonable way

1 For more details about Relational Analysis theory see [Marcotorchino and Michaud, 1979] and
[Marcotorchino, 1984].
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to proceed.

We define as well X̄ and Ā as the inverse relation of X and A respectively. Their
entries are defined as x̄ii′ = 1− xii′ and āii′ = 1− aii′ respectively. In the following
we denote κ the optimal number of clusters, that means the number of clusters of
the partition X which maximizes the criterion F(X).

2.1 Linear balanced criteria

Every linear criterion is an affine function of X, therefore in relational notation it
can be written as:

F(X) =
N

∑
i=1

N

∑
i′=1

Φ(aii′)xii′ +K, (4)

where Φ(aii′) denotes any function depending only on the original data (for in-
stance the adjacency matrix) and K denotes any constant depending only on the
original data. Therefore, K does not intervene in the optimization problem.

Definition 1 (Property of linear balance). A linear criterion is balanced if it
can be written in the following general form:

F(X) =
N

∑
i=1

N

∑
i′=1

φ(aii′)xii′ +
N

∑
i=1

N

∑
i′=1

φ̄(aii′)x̄ii′ +K. (5)

where φ(.) and φ̄(.) are non negative functions depending only on the orig-
inal data and verifying ∑

N
i=1 ∑

N
i′=1 φii′ > 0 and ∑

N
i=1 ∑

N
i′=1 φ̄ii′ > 0.

So, they can not be all null simultaneously.

By replacing x̄ by its definition 1− xii′ , equation (5) can be rewritten as follows:

F(X) =
N

∑
i=1

N

∑
i′=1

(φii′ − φ̄ii′)xii′ +K. (6)

2.1.1 Interpretation of functions φ(.) and φ̄(.)

At this point, we can give the intuition behind functions φ(.) and φ̄(.). From expres-
sion (6) we deduce the importance of the property of balance for linear criteria. If
the criterion is a function to maximize, the presence and/or absence of the terms φii′
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and φ̄ii′ has the following impact on the optimal solution:

• If φ̄ii′ = 0∀i, i′ the solution that maximizes F(X) is the partition where all nodes
are clustered together in a single cluster, so κ = 1 and xii′ = 1 ∀(i, i′) and
F(X) = ∑

N
i=1 ∑

N
i′=1 φii′ .

• If φii′ = 0∀i, i′ then the optimal solution that maximizes F(X) is the partition
where all nodes are separated, so κ = N and xii′ = 0∀ i 6= i′ and xii = 1∀i there-
fore F(X) = ∑

N
i=1 ∑

N
i′=1 φ̄ii.

In other words, the optimization of a linear criterion who does not verify the
property of balance will either cluster all the nodes in a single cluster or isolate
each node in its own cluster, therefore forcing the user to fix the number of clusters
in advance.

We can deduce from the previous paragraphs that the values taken by the func-
tions φ and φ̄ create a sort of balance between the fact of generating as many clusters
as possible, κ = N, and the fact generating only one cluster, κ = 1.

In the following we will call the quantity ∑
N
i=1 ∑

N
i′=1 φ(aii′)xii′ the term of positive

agreements and the quantity ∑
N
i=1 ∑

N
i′=1 φ̄(aii′)x̄ii′ the term of negative agreements.

2.2 Different levels of balance

We define two levels of balance for all linear balanced criterion:

Definition 2 (Property of local balance). A balanced linear criterion whose
functions φii′ and φ̄ii′ depend only upon the pair (i, i′) (therefore not depending
on global properties of the graph) has the property of local balance.

Some remarks about definition 2:

• When we talk about global properties we refer to the total number of nodes, the
total number of edges or other properties describing the global structure of the
graph.

• For the particular case of local balance where φii′ + φ̄ii′ = K (that is φii′ and φ̄ii′

sum up to a constant), we can conclude that whereas φii′ increases φ̄ii′ decreases
and vice versa.
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Let us consider the special case where φ(aii′) = aii′ , the general term of the ad-
jacency matrix. A null model is a graph with the same total number of edges and
nodes and where the edges are randomly distributed. Let us denote the general term
of the adjacency matrix of this random graph φ̄(aii′). A criterion based on a null
model considers that a random graph does not have community structure. The goal
of such a criterion is to maximize the deviation between the real graph, represented
by φ(aii′) and the null model version of this graph, represented by φ̄(aii′) as shown
in equation (6). Since the original graph and the null model have the same number
of edges M, we have ∑

N
i=1 ∑

N
i′=1 φii′ = ∑

N
i=1 ∑

N
i′=1 φ̄ii′ = 2M. If this constraint causes

φ̄ii′ to depend upon the total number of edges M, then a criterion based on a null
model does not verify the property of local balance. Consequently, it is not scale
invariant because it depends on a global characteristic of the graph.

The definition of null model for linear criteria can be generalized as follows:

Definition 3 (Criterion based on a null model). A balanced linear criterion
that seeks to maximize the deviation between the real graph and a null model
is a criterion based on a null model. In its formulation, the real graph is repre-
sented by φ(aii′) whereas the null model is represented by φ̄(aii′). The func-
tions φii′ and φ̄ii′ satisfy the following condition:

N

∑
i=1

N

∑
i′=1

φii′ =
N

∑
i=1

N

∑
i′=1

φ̄ii′

such that the functions φii′ and φ̄ii′ depend on global properties of the graph.

The global properties of the graph can be, for example, the total number of edges
or the total number of nodes.

We can deduce from definitions 2 and 3 that a linear criterion cannot be locally
balanced and based on a null model at the same time.

In the particular case where φ̄ decreases with the size of the network, it becomes
negligible for large graphs. As explained previously, if this term tends towards zero,
the optimization of the criterion will tend to group the nodes more easily. For in-
stance, a single edge between two sub-graphs would be interpreted by the criterion
as a sign of a strong correlation between the two clusters, and optimizing the crite-
rion would lead to the merge of the two clusters. Such a criterion is said to have a
resolution limit.
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The resolution limit was introduced by [Fortunato and Barthelemy, 2006], where
the authors studied the resolution limit of the modularity of Newman-Girvan. They
demonstrated that modularity optimization may fail to identify modules smaller than
a given size which depends on global characteristics of the graph. Even weakly
interconnected complete sub-graphs – the best identifiable communities – would
be merged by this kind of optimization criteria if the network is sufficiently large.
According to [Kumpula et al., 2007] the resolution limit is present in any modu-
larization criterion based on global optimization of intra-cluster edges and extra-
community links and on a comparison to any null model.

In section 4, we will show how criteria having a resolution limit fail to detect
certain groups of densely connected nodes.

3 Modularization criteria in relational notation

Graph clustering criteria depend strongly on the meaning given to the notion of
community. In this section, we describe six linear modularization criteria and their
relational coding in table 1. We assume that the graphs we want to modularize are
scale-free, that means that their degree distribution follows a power law.

1. The Zahn-Condorcet criterion (1785, 1964): C.T. Zahn was the first author
who studied the problem of finding an equivalence relation X, which best ap-
proximates a given symmetric relation A in the sense of minimizing the dis-
tance of the symmetric difference in [Zahn, 1964]. However the criterion defined
by Zahn corresponds to the dual Condorcet’s criterion (see [Condorcet, 1785])
introduced in Relational Consensus and whose relational coding is given in
[Marcotorchino and Michaud, 1979]. This criterion requires that every node in
each cluster be connected with at least as half as the total nodes inside the clus-
ter. Consequently, for each cluster the fraction of within cluster edges is at least
50% (see appendix and [Conde-Céspedes, 2013] for proof).

2. The Owsiński-Zadrożny criterion (1986) (see [Owsiński and Zadrożny, 1986])
it is a generalization of Condorcet’s function. It has a parameter α , which allows,
according to the context, to define the minimal percentage of required within-
cluster edges: α . For α = 0.5 this criterion is equivalent to Condorcet’s criterion.
The parameter α defines the balance between the positive agreements term and
the negative agreements term. For each cluster the density of edges is at least α%
(see [Conde-Céspedes, 2013]).

3. The Newman-Girvan criterion (2004) (see [Newman and Girvan, 2004]): It is
the best known modularization criterion, called sometimes simply modularity. It
relies upon a null model. Its definition involves a comparison of the number of
within-cluster edges in the real network and the expected number of such edges
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in a random graph where edges are distributed following the independence struc-
ture (a network without regard to community structure). In fact, the modularity
measures the deviation to independence.
As mention in the previous section, this criterion, based on a null model and it has
a resolution limit (see [Fortunato and Barthelemy, 2006]). In fact, as the network
becomes larger M −→ ∞, the term φ̄ii′ =

ai.a.i′
2M

tends to zero since the degree
distribution follows a power law.

4. The Deviation to Uniformity (2013) This criterion maximizes the deviation to
the uniformity structure, it was proposed in [Conde-Céspedes, 2013]. It compares
the number of within-cluster edges in the real graph and the expected number of
such edges in a random graph (the null model) where edges are uniformly dis-
tributed, thus all the nodes have the same degree equal to the average degree of
the graph. This criterion is based on a null model and it has a resolution limit.
indeed δ −→ 0 as N −→ ∞.

5. The Deviation to Indetermination (2013) Analogously to Newman-Girvan
function, this criterion compares the number of within-cluster edges in the real
network and the expected number of such edges in a random graph where
edges are distributed following the indetermination structure2 (a graph with-
out regard to community structure), introduced in [Marcotorchino, 2013] and
[Marcotorchino and Conde-Céspedes, 2013]. The Deviation to Indetermination
is based on a null model, therefore it has a resolution limit.

6. The Balanced modularity3 (2013) This criterion, introduced in
[Conde-Céspedes and Marcotorchino, 2013], was constructed by adding to
the Newman-Girvan modularity a term taking into account the absence of edges
Ā. Whereas Newman-Girvan modularity compares the actual value of aii′ to
its equivalent in the case of a random graph

ai.a.i′
2M

, the new term compares the

value of āii′ to its version in case of a random graph
(N−ai.)(N−a.i′)

N2−2M
. It is

based on a null model and it has a resolution limit.

The six linear criteria of table 1 verify the property of balance, so it is not nec-
essary to set in advance the number of clusters. Table 2 specifically focuses on the
fonctions φii′ and φ̄ii′ for each criterion.

From tables 1 and 2 one can easily deduce that two criteria: Zahn-Condorcet
and Owsiński-Zadrożny verify the property of local balance. Furthermore, table 2
clearly shows that the functions φii′ and φ̄ii′ add up to a constant Kii′ for these two

2 There exists a duality between the independence structure and the indetermination structure (see
[Marcotorchino, 1984], [Marcotorchino, 1985] and [Ah-Pine and Marcotorchino, 2007]).
3 Although the name of this criterion contains the word balanced, its definition is not related to the
property of balance given in definition 1.
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Table 1 Relational notation of linear modularity functions.

Criterion Relational notation

Zahn-Condorcet (1785, 1964) FZC(X) =
N

∑
i=1

N

∑
i′=1

(aii′xii′ + āii′ x̄ii′ )

Owsiński - Zadrożny (1986) FZOZ (X) =
N

∑
i=1

N

∑
i′=1

((1−α)aii′xii′ +α āii′ x̄ii′ )

with 0 < α < 1

Newman-Girvan (2004) FNG(X) =
1

2M

N

∑
i=1

N

∑
i′=1

(
aii′ −

ai.a.i′
2M

)
xii′

Deviation to Uniformity
(2013)

FUNIF(X) =
1

2M

N

∑
i=1

N

∑
i′=1

(
aii′ −

2M
N2

)
xii′

Deviation to Indetermination (2013) FDI(X) =
1

2M

N

∑
i=1

N

∑
i′=1

(
aii′ −

ai.

N
− a.i′

N
+

2M
N2

)
xii′

The Balanced Modularity (2013) FBM(X) =
N

∑
i=1

N

∑
i′=1

((aii′ −Pii′ )xii′ +(āii′ − P̄ii′ )x̄ii′ )

where Pii′ =
ai.a.i′
2M and P̄ii′ =

(
āii′ −

(N−ai.)(N−a.i′ )
N2−2M

)

Table 2 Balance property for linear criteria.

General balance
Criterion Local

Balance
Null
model

Comment

Zahn-Condorcet X φii′ + φ̄ii′ = aii′ + āii′ = 1.
Owsiński-Zadrożny X φii′ + φ̄ii′ = (1−α)aii′ +α āii′ .

Newman-Girvan X
N

∑
i=1

N

∑
i′=1

φ̄ii′ =
N

∑
i=1

N

∑
i′=1

ai.a.i′
2M

= 2M.

Deviation to Uniformity X
N

∑
i=1

N

∑
i′=1

φ̄ii′ =
N

∑
i=1

N

∑
i′=1

2M
N2 = 2M

Deviation to Indetermi-
nation

X
N

∑
i=1

N

∑
i′=1

(
ai.

N
+

a.i′
N
− 2M

N2

)
= 2M

Balanced modularity X
N

∑
i,i′=1

N

∑
i′=1

p̄ii′ =
N

∑
i=1

N

∑
i′=1

āii′ = N2−2M

criteria. The quantity φ̄ii′ decreases with the size of the graph for all criteria that
have a resolution limit.
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4 The impact of merging two clusters

We modularized five real networks of different sizes:
Jazz [Gleiser and Danon, 2003], Internet [Hoerdt and Magoni, 2003], Web
nd.edu [Albert et al., 1999], Amazon [Yang and Leskovec, 2012]4 and Youtube
[Mislove et al., 2007]. We ran a generic version of Louvain Algorithm (see
[Campigotto et al., 2014] and [Blondel et al., 2008]) until achievement of a stable
value of each criterion. The number of clusters obtained for each network is shown
in table 3.

Table 3 Ref: Zahn-Condorcet (ZC), Owsiński- Zadrożny (OZ), Deviation to Uniformity (UNIF),
Newman-Girvan (NG), Deviation to Indetermination(DI) and Balanced Modularity (BM).

Network Jazz Internet Web nd.edu Amazon Youtube
N ∼ 198 70k 325k 334k 1M
M ∼ 3k 351k 1M 925k 3M
δ 0,14 1.44×10−04 2.77×10−05 1.65×10−05 4.64×10−06

Criterion κ κ κ κ κ

ZC 38 40,123 201,647 161,439 878,849
OZ α = 0.4 34 30,897 220,967 121,370 744,680
OZ α = 0.2 23 24,470 184,087 77,700 601,800
UNIF 20 173 711 265 51,584
NG 4 46 511 250 5,567
DI 6 39 324 246 13,985
BM 5 41 333 230 6,410

Table 3 shows that the Zahn-Condorcet and Owsiński- Zadrożny criteria generate
many more clusters than the other criteria having a resolution limit, for which the
number of clusters is rather comparable. Moreover, this difference increases with
the network size. Notice that the number of clusters for the Owsiński- Zadrożny
criterion decreases with α , that is the minimal required fraction of within-cluster
edges, so the criterion becomes more flexible.

In order to explain these differences we measure the impact of merging two clus-
ters on the value of each criterion. Let us suppose we want to merge two clusters C1
and C2 in the network of sizes n1 and n2 respectively. Let us suppose as well they
are connected by l edges as shown in figure 1.

Let us denote CF the contribution of merging two clusters to the value of a
criterion F . The contribution CF can be easily calculated from (6) (for the proof
see [Conde-Céspedes, 2013]):

CF =
n1

∑
i∈C1

n2

∑
i′∈C2

(φii′ − φ̄ii′) (7)

4 the data was taken from http://snap.stanford.edu/data/com-Amazon.html.
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Fig. 1 Two sub graphs of the entire network we want to merge.

• If C > 0 the merger of the two clusters increases the value of the criterion.
• If C < 0 the merger of the two clusters decreases the value of the criterion.

Equation (7) shows that the decision of merging or not the two clusters depends

on a comparison between the quantity
n1

∑
i∈C1

n2

∑
i′∈C2

φii′ and the quantity
n1

∑
i∈C1

n2

∑
i′∈C2

φ̄ii′ .

Giving the fact that both are positive, it is the one with the highest value that decides
to merge or not to merge. Thus, whereas the first one is for fusion the second one is
against the fusion.

Table 4 shows the explicit expression of the contribution for the linear criteria
described below5 .

Table 4 Contribution of merging two clusters for linear criteria.

Criterion: F CF =
n1

∑
i∈C1

n2

∑
i′∈C2

(φii′ − φ̄ii′ )

Zahn-Condorcet CZC =
(

l− n1n2

2

)
Owsiński-Zadrożny COZ = (l−n1n2α) 0 < α < 1
Deviation to Uniformity CUNIF = (l−n1n2δ )

Newman-Girvan CNG =

(
l−n1n2

d1
avd2

av

2M

)
Deviation to Indetermination CDI =

(
l−n1n2

(
d1

av

N
+++

d2
av

N
−−− 2M

N2

))

5 The contribution for the Balanced Modularity will be given later.
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where dav =
∑

N
i∈V ai.

N
is the average degree of the whole graph, d1

av =
∑

n1
i∈C1

ai.

n1

and d2
av =

∑
n2
i′∈C2

a.i′

n2
are the average degrees of C1 and C2 respectively.

We can remark from table 4 that for the five criteria the contribution compares
”the number of edges between C1 and C2: l” to the quantity in bold. We can see
as well that the contribution for locally balanced criteria depends only upon local
properties: l, l̄,n1,n2. In fact, locally balanced criteria are scale invariant. In con-
trast, for the other criteria having a resolution limit the contribution depends and
is decreasing on the global size of the network. We remark as well that for three
criteria: Newman-Girvan, Deviation to Indetermination and Balanced Modularity
the contribution depends on the degree distribution of the two clusters. According
to [Barabasi and Albert, 1999] many real networks fall into the class of scale-free
networks, meaning that their degree distribution follows a power-law. In a scale-free
network a few nodes called hubs have many connexions whereas most nodes have
few connexions.

4.1 Impact on the optimal number of clusters

From the previous results we can deduce the main characteristics of the optimal
partition found by the optimization of each criterion (see table 5). In addition, we
remark the following facts:

• The Zahn-Condorcet criterion: According to table 4 for merging the two clus-
ters C1 and C2, these ones must be connected by at least as many edges as the
half of the maximum possible number of edges6, that is l >

n1n2

2
.

• The Owsiński-Zadrożny criterion: For merging the two clusters C1 and C2,
these ones must be connected by at least as α% as the maximum possible num-
ber of edges.

• The Deviation to Uniformity: According to table 4 for the merge to take place
the fraction of edges between C1 and C2 must be at least equal to the global den-
sity of the whole graph.

• Newman-Girvan criterion: From table 4 we can deduce that the optimal par-
tition does not have clusters with a single node (this result was already demon-
strated in [Brandes et al., 2008]). In fact, if C1 has only one node with only one
connection to C2, thus n1 = 1, d1

av = 1, l = 1 and consequently the contribution

6 This result is a consequence of the rule this criterion relies on: ”The rule of absolute majority of
Condorcet” in voting theory.
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is always positive: CNG =

(
1− ∑

n2
i=1 ai.

2M

)
> 0.

• Balanced Modularity: It is easy to understand the behavour of the contribution
of Balanced Modularity when we compare it to those of Newman-Girvan and
Deviation to Indetermination (see [Conde-Céspedes, 2013] for proof)7. Indeed,
we demostrated in [Conde-Céspedes, 2013] that:

CBM = 2CNG +n1n2
(d1

av−dav)(d2
av−dav)

2M(1−δ )
(8)

and

CBM = 2CDI +n1n2

(
2− 1

δ

)
(d1

av−dav)(d2
av−dav)

N2(1−δ )
. (9)

Although the contribution for the Balanced Modularity is increasing in both the
contribution of Newman Girvan CNG and in the contribution of Deviation to In-
determination CDI , in both cases CBM has an additional term that we can treat as
regulator:

(
n1n2

(d1
av−dav)(d2

av−dav)
2M(1−δ )

)
and

(
n1n2

(
2− 1

δ

) (d1
av−dav)(d2

av−dav)

N2(1−δ )

)
respec-

tively. These two regulators have opposite sign for real networks. In fact, the co-
efficient

(
2− 1

δ

)
of the second regulator is almost surely negative for real graphs

because the density δ << 0.5 for scale-free networks. That is why the Balanced
Modularity behaves as a regulator between both criteria: Newman-Girvan and
Balanced Modularity. However, when the network size increases N −→ ∞ and
M −→ ∞ the regulator terms tend to zero.

Only ground-truth overlapping communities are defined on real networks in ta-
ble 3. This fact makes difficult to judge the quality of the obtained partitions because
we can not directly compare a partition to overlapping communities. That is why in
the next section we will consider artificial networks with a predefined community
structure.

7 These expressions are deduced from the two following expressions of Balanced Modularity in
terms of Newman-Girvan and Deviation to Indetermination criteria:

FBM = 2FNG +
N

∑
i=1

N

∑
i′=1

(
(ai.−dav)(a.i′ −dav)

2M(1−δ )

)
xii′

and

FBM = 2FDI +

(
2− 1

δ

) N

∑
i=1

N

∑
i′=1

(
(ai.−dav)(a.i′ −dav)

N2(1−δ )

)
xii′ .
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5 Experiments with artificial networks

In order to judge the quality of the partitions obtained by each criterion we gen-
erated benchmark LFR graphs8 (see [Lancichinetti et al., 2008]) of different sizes
1000, 5000, 10000, 50000, 100000 and 500000. The input parameters are the same
as those considered in [Lancichinetti and Fortunato, 2009]. The average degree is
20, the maximum degree 50, the exponent of the degree distribution is -2 and that
of the community size distribution is -1. In order to test the existence of resolution
limit we chose small communities sizes, ranging from 10 to 50 nodes, and low val-
ues of mixing parameter, 0.10, 0.20 et 0.30. Figure 2 shows the average number of
clusters for 100 runs of the generic Louvain algorithm.
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Fig. 2 Average number of cluster for artificial LFR graphs (logarithmic scale). The curve of the
real number of clusters (in black) it is almost overlapped with that of OZ1 and OZ2

In figure 2 it is hard to see the curve of the real number of clusters (in black)
beacuse it is almost overlapped with those of OZ1 and OZ2.
Figure 2 shows clearly the difference between the behavior of those criteria having
a resolution limit (NG, DU, DI and BM) and the behavior of criteria locally defined
(ZC and OZ). As the size of the network increases the four criteria suffering from
resolution-limit detect fewer clusters than those predefined. The number of clusters

8 LFR graphs are benchmark graphs introduced in [Lancichinetti et al., 2008] that aim to repro-
duce as much as possible the structure that reflects the real properties of nodes and communities
found in real networks. These artificial graphs have predefined community structure based on the
mixing parameter of each node. As stated in [Lancichinetti et al., 2008], for each node the mixing
parameter is the fraction of its links it shares with the nodes of the network outside its community.
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is rather comparable for these four functions, one reason can be the fact that the term
of negative agreements tends to zero when the network gets bigger. Conversely, the
number of clusters of criteria locally defined increases nearly at the same rate as the
real number of clusters. Whereas OZ with high α identifies more clusters than those
predefined, the criterion which best approaches the real number of clusters is OZ
with low values of α = 0.2 and α = 0.1.

Figure 3 shows the Normalized Mutual Information9 (NMI) for the partitions in
figure 2.

Figure 3 shows that the average NMI decreases with the network size for crite-
ria having a resolution limit. Moreover, they almost overlap. Conversely, the NMI
of the criteria locally defined seem to increase with the network size. The criterion
with the highest NMI is OZ with low values of α , 0.1 and 0.2.

Figure 4 shows the average Normalized Mutual Information for the mixing pa-
rameter ranging from 0.1 to 0.8 for different network sizes.

Figure 4 shows that for all the criteria previously presented the NMI decreases
as the mixing parameter increases. This figure demonstrates once more the differ-
ences between the behavior of criteria with resolution limit and that of the criteria
locally defined. For the first ones the quality decreases abruptly beyond mixing pa-
rameter equal to 0.6. For the second ones, the quality seems to decrease at a lower
rate. However, it is important to remark that the quality of criteria with a resolution
limit decreases not only with the mixing parameter but also with the network size.
Converserly, the behavior of the NMI of locally defined criteria seem to have the
same behavour independtly of the size of the whole network.

9 The the normalized mutual information (NMI) is a measure of similarity of two partitions. It was
originated in information theory to measure the departure from independence between two random
variables. Given a set of objects V and two partitions P1 and P2 defined on V , intuitively, the mutual
information measures the information that P1 and P2 share. It is normalized between 0 and 1. It is
worth 0 if the two partitions are independent and 1 if they are identical. Let p and q be the total
number of clusters of partitions P1 and P2 respectively. The NMI is calculated as follows:

NMI(P1,P2) =
2I(P1,P2)

H(P1)+H(P2)

where:

• I(P1,P2) = ∑
p
u=1 ∑

q
v=1 puv ln

(
puv

pu. p.v

)
is the mutual information of partitions P1 and P2. I tells

how much we learn about P1 if we know P2 and vice versa. The quantity puv =
nuv
N is the fraction

of objects who belong simultaneously to cluster u of partition P1 and to cluster v of partition
P2. Analogously puv =

nu.
N is the fraction of objects who belong to cluster u of partition P1 and

puv =
n.v
N is the fraction of objects who belong to cluster v of partition P2 and |V | = N. In the

case nuv = 0 we assume ln
(

puv
pu. p.v

)
= 0.

• H(P1) = −∑
p
u=1 pu. ln pu. represents the Shanon entropy of P1 and H(P2) = −∑

q
v=1 p.v ln p.v

represents the Shanon entropy of P2 (see [Shannon, 1948]).
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Fig. 3 The Average Normalized Mutual Information (NMI) on the graphs in figure 2 (logarithmic
scale).

Another point to remark is that even when the mixing parameter is high all the
criteria find a community structure. In fact, the pre-defined communities in the LFR
graphs are based on mixing parameter, whereas all the criteria analysed in this ar-
ticle have their own definition of graph with no community structure which is not
based on the mixing parameter.

Table 5 presents a summary of the results found by the previous analysis.

6 Conclusions

We presented six linear modularization criteria in relational notation, Zahn-Condorcet,
Owsiński- Zadrożny, the Newman-Girvan modularity, the Deviation to Uniformity
index, the Deviation to Indetermination index and the Balanced-Modularity. This
notation allowed us to easily identify the criteria suffering from a resolution limit.
We found that the first two criteria had a local definition, whereas the others, based
on a null model, had a resolution limit. These findings were confirmed by modu-
larizing real and artificial graphs using a generic version of the Louvain algorithm.
We compared the number of clusters found by the six criteria and the Normalized
Mutual information for artificial graphs. The results showed that criteria based on
a local definition had a better performance than those based on a null model when
the size of the graph increases, experimentally the crition having the best behavior
was Owsiński- Zadrożny with low values of parameter α . However, it is important
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Fig. 4 The Average Normalized Mutual Information (NMI) according to mixing parameter for
networks of 6 different sizes: 1000, 5000, 10000, 50000, 100000 and 500000.

to remark that these results are based on a particular kind of graphs, more precisely,
graphs with a low mixing parameter, small communities10, node degrees and com-
munity sizes distributed according to a power law.
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10 What we call small are communities ranging from 10 to 50 nodes, that is the same sizes consid-
ered by the authors of LFR graphs (see [Lancichinetti and Fortunato, 2009]).



18 P. Conde-Céspedes, J. F. Marcotorchino and E. Viennet

Table 5 Summary by criterion

Criterion Characteristics of the optimal partition

Zahn-Condorcet • The density of edges of each cluster is at least equal to 50%.
• No resolution limit.
• For real networks the optimal partition contains many small clusters
or single nodes.

Owsiński-Zadrożny • It gives the choice to define the minimum required within-cluster
density, α .
• For α = 0.5 the Owsiński-Zadrożny criterion ≡ the Zahn-
Condorcet criterion.
• No resolution limit.
• The optimal partition depends on the parameter α

Deviation to Uniformity • A particular case of Owsiński-Zadrożny criterion with α = δ .
• The density of within cluster edges of each cluster is at least the
global density δ .
• It has a resolution limit.

Newman-Girvan • It depends on the degree distribution.
• It has a resolution limit.
• The optimal partition has no single nodes.

Deviation to Indetermination • It depends on the degree distribution.
• It has a resolution limit.

Balanced modularity • It depends on the degree distribution.
• It has a resolution limit.

Appendix

Theorem 1 (The density of clusters obtained by maximization of Zahn-Condorcet
criterion is least 50% ). Given a connected, non-oriented and unweighted graph
G = (V,E), the optimal partition obtained by optimizing the Zahn-Condorcet crite-
rion has the following property: the number of within-cluster edges of each cluster
is at least as half as the possible maximum existing within-cluster edges, that is to
say the number of existing edges in the case the cluster is a clique. Furthermore,
every node in each cluster is connected with at least as half as the total nodes inside
the cluster.

Proof. Considering the constraints of reflexivity and symmetry of the relational
variable xii′ (i.e. xii = 1∀i and xii′ = xi′i), the expression of Zahn-Condorcet crite-
rion in table 2 can be written as follows:

FZC(X) = ∑i>i′(aii′ − āii′)xii′ +N2−2M−N.

where:
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• ∑i>i′ aii′xii′ is the number of within-cluster edges for all clusters.
• ∑i>i′ āii′xii′ is the number of missing within-cluster edges for all clusters.

If we denote E j the number of within edges of cluster j, the total number of miss-

ing edges for the cluster j will be
(

n j(n j−1)
2 −E j

)
. So, the criterion Zahn-Condorcet

will become:

FZC(C ) = ∑
κ
j=1

(
E j−

(
n j(n j−1)

2 −E j
))

+N2−2M−N,

or
FZC(C ) = ∑

κ
j=1(2E j−

n j(n j−1)
2 )+N2−2M−N.

the term (2E j−
n j(n j−1)

2 ) represents the contribution of cluster j to the value of
the criterion. For each cluster of the optimal partition this term must be positive or
null. Otherwise it would be possible to obtain a better partition by isolating each
node in cluster j (the contribution to the value of the criterion by a cluster of an
isolated node is null). This implies:

(2E j−
n j(n j−1)

2 )≥ 0, or E j ≥
n j(n j−1)

4 .

So, each cluster j has a density of at least 50%.

This result can be extended to every node of each cluster of the optimal parti-
tion. In fact, let us suppose that there is a cluster j containing a node n0 which is
connected with less than half of the total nodes in the cluster. Let us denote E j0 the

connexions of n0 to nodes in C j. So, E j0 <=
(n j−1)

2 .
It is always possible to obtain a better partition by isolating n0. In fact, the con-

tribution of the two resulting clusters after isolation of node n0 is:

2(E j−E j0)−
(n j−1)(n j−2)

2

this last expression is greater than the contribution of cluster j, given by (2E j−
n j(n j−1)

2 ), if n0 is connected with less than half of nodes in C j.

This also proves why the partitions obtaining by optimizing Zahn-Condorcet cri-
terion contain sometimes clusters of isolates nodes. ut
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doctorat, Université Pierre et Marie Curie.
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