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Abstract: Community detection in complex networks has attracted so much attention in the last years. Usually, 
community detection is referred to the problem of partitioning an entire network. In contrast, local community 
detection aims to detect the community of a given node in the network. This can be useful when we do not have 
information concerning the entire network or when there is a specific node of interest in the network. In this paper, 
we focus on the problem of detection of local communities of very high density. Communities of maximal density 
are called complete cliques in graph theory. In real complex networks, whose degree distribution follows a power 
law, usually complete cliques are small sets of nodes. This led to the problem of finding quasi-cliques of maximal 
size. This problem is NP-hard. Some heuristics on the optimal solution were recently proposed. In this paper, we 
propose an algorithm to calculate an upper bound on the optimal solution in order to evaluate the existing 
heuristics. The proposed upper bound will be evaluated experimentally on real networks. 
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1. Introduction 
 

Over the past decade, the study of complex 
networks (network-based representations of complex 
systems) has taken the sciences by storm. Due to 
various factors, such as globalization, the Internet, 
social networks, etc. Researchers from biology to 
physics, from economics to mathematics, and from 
computer science to sociology, are more and more 
involved with the collection, modeling and analysis of 
network-indexed data. 
 

A network is usually described by a set of entities, 
called vertices or nodes, connected by links, also 
called edges. Real complex networks share important 

                                                
 

characteristics (degree distribution, local clustering) 
and often exhibit community structures. The study of 
the communities has attracted a lot of attention (see 
[Fortunato, 2010]). Detecting communities in large 
complex networks is important to understand their 
structure and allows to extract features useful for 
visualization or prediction of various phenomena like 
the diffusion of information or for social 
recommendation. 
 

A community is usually referred to as a set of 
strongly interconnected nodes. The density of links 
measures the strength of the relationships in the 
community. However, many community detection 
methods do not guarantee anything about the density 
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of the resulting communities (for instance, when using 
the Newman-Girvan modularity [Newman and 
Girvan, 2004], the density of the output communities 
can become very low due to its resolution limit 
[Fortunato and Barthelemy, 2006]). A complete clique 
is a set of nodes where every two distinct nodes are 
connected to each other. One can easily deduce that 
complete cliques are communities of maximal density. 
However, the size of a clique is limited by the degree 
of its nodes. Most real complex networks’ degree 
distribution follows a power law, then cliques can be 
very small or even trivial, such as pair of nodes or 
triangles. This led to the relaxation of the concept of a 
complete clique to an almost complete subgraph, also 
called quasi-clique. Therefore, we focus on the 
problem of finding quasi-cliques of maximal size.2 
 

To give a concrete definition of a quasi-clique, we 
consider the concept of an α-quasi-clique (for a given 
α, such that 0 < α <1). Then, we define, an α-quasi-
clique as a group of nodes where each member is 
connected to more than a proportion α of the other 
nodes. Consequently, an α-quasi-clique has a density 
greater than α. By choosing α equal to 1, an α-quasi-
clique becomes a complete clique. Considering an α-
quasi-clique instead of a complete clique can be 
preferable for applications where interaction between 
members of the community does not need to be direct 
and could be successfully accomplished through 
intermediaries. Mining all the maximal α-quasi-
cliques of a network is NP-complete (see [Karp, 1972] 
and [Asahiro et al., 2002]). Efficient exact methods or 
approximations to solve it are available. However, all 
these methods generally assume that the network is 
entirely known and they try to find all existing α-
quasi-cliques. 

 
In some particular applications, the network can be 

so large that we do not have access to information 
concerning the entire network. Furthermore, one can 
be only interested in the community of a particular 
node in the network. Moreover, detecting the local 
communities of specific nodes may be very important 
for applications dealing with huge networks, when 
iterating through all nodes would be impractical or 
when the network is not entirely known. The detection 
of the community of a given node of interest is called 
local community detection problem.  
 

The problem of finding local communities of 
maximal size of type α-quasi-cliques was first tacked 
by [Conde et al. (2018)] (one can also see a 
preliminary version on [Conde et al. (2015)]). The 
proposed algorithm, denoted RNN (Rank on the 
Number of Neighbors). This algorithm, like most 
algorithms of community detection, is a heuristic. 
Usually heuristics are evaluated by comparing the 
obtained results to existing methods. However, there 
                                                
2 This is a well-known problem in graph theory. The 
intesrested reader can see [Bomze et al., 1999], [Lee et 
al., 2010], [Pattillo et al., 2013] and [Wu and Hao, 2015]. 

is no a concrete measure on how close the obtained 
solution is to the optimal one. 

 
In this paper, we propose an upper bound for the 

optimal solution of the so-called Maximal α–quasi-
clique community of a given node. This upper bound 
will be useful to evaluate the experimental results 
obtained by the RNN algorithm. 

 
This paper is organized as follows: Section 2 presents 
the main definitions (notations and problem 
formulation). Next, we discuss about the proposed 
upper bound in Section 3. Then, Section 4 presents the 
results obtained by comparing the upper bound with 
the results obtained by the RNN algorithm. Finally, 
Section 5 draws some conclusions and perspectives. 
 

2. Main Definitions 
 

A graph, denoted G = (V, E) is defined by V the set 
of vertices or nodes, and E the set of edges or links, 
formed by pairs of vertices. To simplify we consider 
undirected graphs, where edges are not oriented. The 
neighborhood Γ(u) of a node u is the set of nodes v 
such that (u, v) ∈ E. The degree of a node u, denoted 
d(u), is the number of its neighbors, i.e. d(u) = Γ(u). 
Considering all these notations, an α-quasi-clique is 
defined as follows: 

 

Definition 1:  α-quasi-clique 
Given an undirected graph G(V,E), and a 
parameter  α  with 0< α< 1, an α-quasi-clique is 
the subgraph induced by a subset of the node set 
C ⊆ V if the following condition holds: 

|Γ(n) ∩ C| > α(|C| − 1), ∀n ∈ C         (1) 

where the symbols |S| denotes the cardinality of the 
set S. 
 

Equation (1) implies that each node in the quasi-
clique C must be connected to more than a proportion 
α of the other nodes. Notice that for α =1 an α-quasi-
clique is a complete clique. Then, when choosing a 
high value for α the resulting communities are robust, 
contain strongly connected nodes and have an edge-
density greater than α (see [Conde et al. (2018)] for 
the proof). 
 

In the following, we will call Equation (1) the rule of 
an α–alpha-quasi-clique. This rule constitutes a lower 
bound on the minimal internal connections of each 
node. 

 
In the literature, one can find other definitions of the 

so-called α−quasi-clique. The most common variant, 
considered by [Abello et al. (2002)], [Chen and Saad 
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(2012)][Pattillo et al. (2013)] and [Tsourakakis et al. 
(2013)],  is just a relaxation of Definition 1 as it just is 
just constraints the global density of the quasi-clique 
to be at least α. Other variants much closer to 
Definition 1 are considered by [Brunato et al. (2007)] 
and [Liu et al. (2008)]. However, these latter allow the 
equality in Equation (1) which implies that each node 
might have as many connections as non-connections 
in the community whereas Definition 1 requires the 
absolute majority. For all these reasons, in this study, 
we consider Definition 1 as it guarantees that the 
detected communities are robust, contain strongly 
connected nodes. 
 

2.1 Problem formulation 
 

The size of an α-quasi-clique is limited by the degree 
of its nodes. Most real complex networks’ degree 
distribution follows a power law. Therefore, mining 
for the α-quasi-clique community of specific nodes 
with low degree can lead to trivial solutions, such as 
pairs of nodes or triangles. Such trivial communities 
are not interesting for applications. Therefore, the 
purpose is to find quasi-cliques of maximal size. 

 
In the literature, one can find several methods for 

detecting the maximal α-quasi-clique of an entire 
network. In this paper, we consider the problem of 
finding an α-quasi-clique of maximal cardinality 
containing a given node. This set of nodes will be the 
local community of that node with high density for α 
high. This problem can be formulated as follows: 
 

Problem 1: The maximal α−quasi-clique local 
community problem 

Given a node n0 of a graph G(V, E) and a 
parameter α (0 < α < 1), the purpose is to find the 
largest α−quasi-clique, denoted C(n0) containing 
n0, mathematically: 

 
maximize |C| 

subject to n0 ∈ C    (2) 

and |Γ(n i ) ∩ C| > α(|C| − 1), ∀ni ∈ C. 

 
Problem 1 is NP-complete (see [Karp, 1972] and 

[Asahiro et al., 2002]). Therefore, only heuristics that 
run in reasonable amount of time can be proposed. We 
will discuss these methods in the Section Related 
works.  

 
The Problem 1 can have multiple solutions. Indeed, 

a node can belong to more than one maximal α−quasi-
clique community. 
 
2.2 Related works 

 
The problem of finding the maximal α−quasi-clique 

local community was addressed by [Conde-Céspedes 

et al. (2015)] and later improved by [Conde-Céspedes 
et al. (2018)]. In those studies, the authors proposed a 
method denoted RANK-NUM-NEIGHS (RNN). The 
RNN method is a greedy and iterative algorithm. The 
resulting local community is denoted C(n0). At first 
iteration C(n0) is composed of only one node n0. Then, 
iteratively, a set of nodes from the neighborhood of the 
community Γ(C(n0)) is chosen to become a member of 
C(n0) provided that the new nodes will satisfied the 
rule of an α–alpha-quasi-clique given in Equation (1). 
The choice of nodes is based on the number of 
common neighbors between with the local community 
C(n0). Indeed, the RNN algorithm stablish a rank 
according to the number of neighbors for all possible 
set of nodes in the neighborhood of C(n0). That is 
where the name RNN comes from. For more details, 
the interested reader can see [Conde-Céspedes et al 
(2018)]. 

 
Other heuristics exist that deal with similar problems 

to Problem 1. However, either they try to find quasi-
cliques of maximal size subgraph mining the whole 
graph with no reference to a given node (see for 
instance the QUICK method de [Liu et al., 2008], the 
RLS- DLS method de [Brunato et al. (2007)], [Conde-
Céspedes et al. 2016] or even the Louvain method 
adapted to Zahn-Condorcet and Owsinski-Zadrozny 
criteria, also called studied by [Conde-Céspedes et al. 
2015], [Campigotto et al. 2014]) or they do not 
constraint the output communities to be α-quasi-
cliques (see for instance [Bagrow (2008)], [Clauset 
(2005)], [Luo et al. (2006)]).  

 
For all these reasons, we will consider the results 

obtained only with the RNN algorithm in the 
experimental results. First of all, we will define the 
algorithm to calculate an upper bound for the optimal 
solution of Problem 1 and then, compare the difference 
with the results obtained by the RNN algorithm. Some 
preliminary results were presented in [Conde-
Céspedes (2019)]. 
 

3. Calculation of the Bound 
 
It is well known that community detection is an NP-
hard problem. Problem 1 is not an exception. Then, 
many authors usually propose heuristics and evaluate 
their proposals by comparing the obtained results to 
those obtained by already existing heuristics. 
Furthermore, heuristics might lack of stability. That is, 
it is necessary to execute the algorithm several times 
to obtain reliable results. Calculating a bound on the 
optimal solution of an NP-hard problem allows to 
evaluate a heuristic in an objective way. Considering 
all these reasons, in this section we propose to 
approach, the value of the optimal solution of Problem 
1 in terms of community size. Since it is a 
maximization problem we deduce an upper bound.   
 
In the following let us denote C*( n0) the community 
that optimizes problem 1 for a given node n0. Then, an 
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optimal solution for Problem 1 will be | C*( n0) |.  
Then, the following theorem holds (see appendix for 
proof): 
 

Theorem 1: Upper bound B0(n0) for the maximal  
α−quasi-clique community C*( n0) of n0. 

Given a node n0 with degree d(n0), the size of the 
maximal α-quasi-clique community n0 can belong 
to |C*( n0) | is bounded by B0(n0), given by: 

𝐵" 𝑛" = % &'
(

.                    (3) 

 
The symbols 𝑥  and 𝑥 	denote the floor and the 

ceiling function of a real number x respectively. 
 

Then, 𝐵" 𝑛"  constitutes an upper bound for the 
optimal solution of Problem 1: 
 

𝐶∗ 	𝑛" ≤ 𝐵" 𝑛" .                    (4) 
 
The bound 𝐵" 𝑛" 	is satisfied if and only if all the 
neighbors of 𝑛" belong to its local community. 
Therefore, it might be loose specially for nodes that 
have a high degree.  
 
Now, consider that the optimal solution contains at 
least two nodes (for any α) provided that 𝑛" has at 
least one neighbor. That is, at least one of the 
neighbors of 	𝑛0	belongs to 𝐶∗ 	𝑛0  and any node in 
the community also must verify the rule of an α–alpha-
quasi-clique in Equation (1). Then, we can deduce a 
tighter bound for the optimal solution denoted 𝐵/(. ): 
 

𝐵/ 𝑛" = min max
&∈9(&')

𝐵"(𝑛) , 𝐵" 𝑛" .	    (5) 

 
Then, the following inequalities hold: 
 

𝐶∗ 	𝑛" ≤ 𝐵/ 𝑛" 	≤ 𝐵" 𝑛" .           (6) 
 
Now, consider the node 0 in Figure 1 and α =0.5. We 
are interested in an upper bound of node 0 and we 
obtain 𝐵" 0 =8 and 𝐵/ 0 =6, then, 𝐶∗ 	0 ≤ 6. 
However, this bound is reached if and only if exactly 
three of the neighbors of node 0 are in 𝐶∗ 	0 . By 
calculating the upper bound 𝐵/ for neighbors 3 and 
4, we notice they cannot belong to a community of 
size 6. Indeed, their degrees are worth 1 then 
𝐵" 3 =𝐵" 4 =2. That is, nodes 3 and 4 maximal 
quasi-clique communities are of size 2. We can deduce 
that the upper bound 𝐵/ 0 =6 cannot be achieved. 
Then, there are only two possibilities:  
 

• either nodes 3 and 4 belong to  𝐶∗ 	𝑛0 	 and 
in that case  𝐶∗ 	0 = 2. 

• either nodes 3 and 4 do not belong to  𝐶∗ 	𝑛0  
and in that case the remaining degree of 0 is 

2 and as a result 𝐶∗ 	0 ≤ 4 the community 
size of the optimal solution is at most 4.  

 
In conclusion, the optimal solution 𝐶∗ 	0  is 

bounded by 4, which is exactly the size of 
𝐶∗ 	0 ={0,1,2,5} 
 

 
 
Fig. 1. The node 0 cannot belong to a community of size 6 
as it needs at least 3 connections to belong to a community 
of this size and 2 of its neighbors, nodes 3 and 4, can belong 
to a community of size at most 2. 
 

All these explanations can be summarized in an 
algorithm to calculate a tighter bound which will be 
denoted B. One can easily realize that: 

 
𝐶∗ 	𝑛" ≤ 𝐵 𝑛" ≤ 𝐵/ 𝑛" 	≤ 𝐵" 𝑛" . 

 
In Algorithm 1 we can see all the steps to calculate the 
bound B. 
 

Algorithm 1: Upper Bound B for the optimal 
community size 𝐶∗ 	𝑛"  of a node n0 
Require: A node n0 and a parameter α 
Ensure: An upper bound B for the optimal 
community size 𝐶∗ 	𝑛"  
1: Set 𝐵 = 	𝐵" 𝑛" , the remaining degree r=d(n0) 
and its neighborhood Γ 	𝑛" . 
2: For every node n in Γ 	𝑛"  
       Calculate 𝐵"(𝑛) 
    end For 
3: Sort the values 𝐵" 𝑛  by ascending order and 
calculate a histogram of each value. Denote the 
smallest value 𝐵" 𝑛 1 , its frequency f[i] in the 
histogram and set 𝑖 =1.  
4: while 𝐵 > 𝐵" 𝑛 𝑖  
      Update r = r – f[i] 
       Update 𝐵 = C

(
   

       increase by 1 the value of 𝑖 
    end while  
return B  

   
Experimentally we found that the bound B is useful 
especially for nodes that have a high degree. For 
example, consider the node that represents the 
instructor in the Zachary Karate Club network 
[Zachary 1977] (node 1). We obtain B0(1)=32, 
B1(1)=20 and B (1)= 10 whereas the optimal solution 
is C*(1)=8. 
 

4. Experimental results 
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In this section, we calculated the upper bound B for all 
the nodes of the 3 real networks for different values of 
α. Then, we compared the upper bound to the 
community sizes experimentally obtained by the RNN 
algorithm. The Figure 2 shows the histogram of the 
difference between the upper bound B and the results 
of the RNN method for the following networks: 
 

– ”The Zachary Karate Club network” (karate) 
[Zachary 1977], 34 nodes and 78 edges. 

– ”Books about US politics” (polbooks) [Krebs 
2004], 104 nodes and 441 edges. 

– ”Political blogosphere” (polblogs) [Adamic 
and Glance, 2005], 1490 nodes and 16715 
edges. 

 
 

 
 
Fig 2: Histogram of the difference between the upper bound B and the results of RNN algorithm for real networks. 
 
 

The Figure 2 shows that the difference is 
concentrated in small values for the 3 networks 
because the frequency is decreasing. Especially 
for the karate dataset, the bound was very close to 
the optimal solution for all but two nodes. The 
smallest is the difference, the tighter is the bound. 
A value of the difference equal to zero means that 
the bound is equal to the optimal solution as it can 
be reached by the RNN algorithm. For the three 
real networks, we obtained small differences for 
most of the nodes. For the bound to be reached at 
least one node in the community must be 
saturated, that means the number of its internal 

connections in the community must be equal to its 
degree. That is not always the case, and in that 
case the bound might not be tight enough. 
 
5. Conclusions and perspectives 
 

In this paper, we tackled what we called the maximal 
α−quasi-clique local community problem. This 
problem being NP-hard, we proposed an upper bound 
on the optimal solution. We started by proposing a 
loose bound based on the degree of the starting node 
and then we deduce a tighter bound. Experimentally in 
real networks, we saw that in most cases the bound 
was equal to the optimal solution. 
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The proposed bound is satisfied if and only if at least 
one node in the local community is saturated, so it may 
be loose in case of a complete clique. This drawback 
can lead to perspectives on improving the bound. We 
can also consider structural properties of the optimal 
solution, one can mention, for instance, the fact that if 
a > 0.5 the optimal solution contains only nodes of the 
first and the second neighborhood of the starting node 
as it was demonstrated in [Conde-Céspedes et al., 
2018]. This must simplify the calculation of the node 
as well as give as ideas for a new algorithm. 
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Appendix 
 
Proof of theorem 1 
n0 must respect the rule of an α–alpha-quasi-clique 
(see Equation (1)) as it is part of C*( n0). Let us denote 
din( n0) the number of internal connections of  n0 in C*. 
That is din( n0)= |Γ(n0) ∩ C*( n0)|.  Then, we have:  
 
din( n0) > α(|C*( n0)| − 1). 
 
This inequality implies: 
 
%DE(&')

(
+ 1 > |C∗(𝑛")|  

 
The left-hand side of this last expression gives un 
upper bound for |C∗(𝑛")|, which we denote 𝐵" 𝑛" . 
This inequality is equivalent to:  
 

𝐵" 𝑛" = 	

𝑑J&(𝑛")
𝛼

			if		
𝑑J&(𝑛")
𝛼

+ 1 	is	integer

𝑑J&(𝑛")
𝛼

+ 1																							otherwise
 

 
which is equivalent to: 

𝐵" 𝑛" =
𝑑𝑖𝑛(𝑛0)
𝛼

 

 
Since 𝑑J&(𝑛") is upper bounded by 𝑑 𝑛"  we obtain: 
 

𝐵" 𝑛" =
𝑑 𝑛"
𝛼

 

 
qed. 
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