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Chapter 1

SPACE TIME CODING IN MULTIPLE INPUT
MULTIPLE OUTPUT SYSTEMS: CHALLENGES AND

APPLICATIONS
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In a point-to-point communication, the use of multiple transmitter and receiver antennas
enables an increased data throughput through spatial multiplexing and an increased range
by exploiting the spatial diversity. The design of space time coding schemes that fully
achieve the available diversity and the multiplexing gain in a MIMO system has been ex-
tensively addressed in literature yielding to the design of the optimal family of codes called
perfect space time codes constructed from cyclic division algebra. These codes, originally
designed for flat fading channels, received a lot of attention in industry in the last few years.
However, the recent standards that use multiple antenna terminals are based on more realis-
tic assumptions involving the use of outer codes and multi-taps channels. This chapter will
give a literature overview on the design criteria of space time coding technique and their
application in industrial systems.
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1. Introduction

One of the main challenge of the next generations of wireless communication systems is
to offer with a high reliability a high data rate. The introduction of multiple antennas at
the transmitter and the receiver side, commonly known as multiple input multiple output
(MIMO) systems, offers a high data rate through spatial multiplexing and an increased
reliability by exploiting the spatial diversity.

These MIMO systems have been widely studied in literature over the last few years
aiming to conceive convenient transmission schemes that take advantages from the MIMO
benefits. These works consider mainly the cases when no outer codes (e.g. convolutional
code, turbo code, LDPC, ...) are used at the transmitter side. The design of such schemes
depend critically on the availability of the channel state information (CSI) at the transmitter
side. When full CSI is available at the transmitter, optimal power allocation can be per-
formed on the different transmit antennas in order to maximize the capacity of the MMO
system [1]. However, the full CSIT is not always feasible as it requires a large amount of
feedback. The no CSIT assumption is more considered in a practical scenario. For this case,
two approaches have been studied in the literature. The first approach proposed by Tarokh
et al. in [2] is more tailored to the Rayleigh fading distribution and consists to minimize the
error probability over all the fading distribution. The second approach proposed by Zheng
and Tse in [3] is more general and characterizes at high signal-to-noise ratio (SNR) the
dual benefits in term of diversity and spatial multiplexing using the diversity multiplexing
tradeoff (DMT) framework.

More recently, Oggier et al. in [4] proposed a family of optimal space time codes known
as perfect space time codes that fulfill the design criteria of Tarokh et al. in [2]. Moreover,
it has been shown that these codes are the optimal codes over flat fading MIMO channel
(when no outer codes are used) since they achieve full rate and full diversity, preserve the
mutual information, achieve the Diversity Multiplexing Tradeoff (DMT) [3] and have a non
vanishing determinant [5, 6].

Unlike the simplified flat fading MIMO channel without outer codes, industrial trans-
mission schemes are based on more realistic assumptions involving the use of outer codes
such as the convolutional code and frequency selective channels [7–9]. The error perfor-
mances of the perfect space time code in such scenario have been studied in [10] where
the authors studied the impact of concatenating space time codes with good outer code
in the case of bit interleaved coded modulation and multiple input multiple output system
(BICM-MIMO) over a flat or a frequency selective channel.

This chapter will give first a literature overview on the design of transmission schemes
for the case of MIMO flat fading channel when no outer code is used. Then the construction
of the family of perfect space time codes from the cyclic division algebra is presented.
Finally, based on our contribution in [10], we focus on the application of these MIMO
codes in a standard context. Throughout this chapter and for the sake of the clarity of the
presentation, we will skip all the details related to the mathematical derivations. However,
we emphasize on the resulting interpretations and their impact on the MIMO transmission
scheme design. The interested reader is invited to refer the indicated references for more
details. The rest of the chapter will be organized as following. In Section 2., we review from
literature some basic principles on MIMO systems that will be essential for the development
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of this chapter. Section 3. is dedicated to the code construction schemes over the MIMO
channel and the evaluation of their error performance over a flat fading MIMO channel.
Then, we present in Section 4. the performance of the optimal perfect space time codes in a
practical scenario. Finally, we give in Section 5. some concluding remarks and perspectives.

Notation: The notation used in this chapter is as follows. Boldface lower case letters v
denote vectors, boldface capital letters M denote matrices. M† and MT denotes respectively
the matrix transposition and conjugated transposition operations. ‖v‖ stands for the Eu-
clidean norm of vector v. The Frobenius norm of matrix H is denoted by ‖H‖2

F = Tr{H†H}
where Tr{A} refers to the trace of matrix A. The N×N identity matrix is represented by IN .
CN represents the complex Gaussian random variable. Finally, EX {.} is the mathematical
expectation of random variable X .

2. Basic principles on MIMO flat fading channel

The multiple input multiple output (MIMO) systems consist simply to transmit and to re-
ceive data from/to different locations over different uncorrelated fading paths. One of the
main advantage of the MIMO system is the possibility to recover data over the independent
uncorrelated fading paths if one or more paths are deeply faded. This gain is known as
diversity gain in the MIMO terminology. Another advantage of the MIMO channel is the
gain in data rate due to the spatial multiplexing of data over the different antennas. This
gain corresponds to the multiplexing gain in the MIMO terminology.

The main challenge in conceiving a MIMO system is to code data over the different
antennas in a convenient way to benefit from MIMO gains.

2.1. From SISO to MIMO channel

2.1.1. Modeling the SISO channel

For a single input single output SISO system, represented in Figure 1, the transmitted signal
x is modified by the channel in an unpredicted way due to the multiplicative random fading
h and the additive Gaussian noise z with variance N0.

Transmitted symbol Received symbol 

z ∼ CN (0, N0)

yx

h ∼ CN (0, 1)

Figure 1: SISO channel

The received signal is therefore
y = hx+ z.

In wireless communication, the fading coefficient is often modeled as a complex Gaussian
random variable h = re jθ ∼ CN (0,1). In this case, r follows a Rayleigh distribution with
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p(r) = 1
2π

e−
r2
2 and θ is uniformly distributed in [0 2π] .

2.1.2. Wireless MIMO system

The MIMO system is illustrated in Figure 2. In this case, each antenna j with j = 1 . . .nr

receives the noisy linear combination of all the transmitted signals. The received signal is,

Binary entry Binary output

Coding

and 

Modulation

and 

Decoding

Demodulation

h11

x1 y1

y2

ynr

x2

xnt

hnrnt

h21

hnr1

Figure 2: Multiple Input Multiple Output system
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Or equivalently, using the matricial notation is,

y = Hx+ω,

where x = (xi)1≤i≤nt is the transmitted signal subjected to the power constraint
Tr
[
E[xx†]

]
≤ P, the channel matrix H = (hi, j)1≤i≤nr,1≤ j≤nt and ω is the additive noise vec-

tor. We assume here that the channel is flat fading which means that the channel remains
constant during all the duration of the transmission.

2.2. Channel capacity and multiplexing gain

The capacity of a channel C(SNR) represents the maximal number of bits that can be trans-
mitted in one time slot where SNR = P

N0
is the signal to noise ratio. For a MIMO channel,

the capacity was derived in [1] and is summarized in Theorem 1.

Theorem 1 (Instantaneous channel capacity). The maximal rate that can be transmitted
over a nt ×nr MIMO channel, known as the capacity of MIMO channel is equal to,

C(SNR) = max
Q:Tr(Q)≤P

log2 det
(
I+

1
N0

HQH†),

where Q = E
[
xx†
]

is the covariance matrix of the transmitted signal with limited power P
such that Tr(Q)≤ P.
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The covariance matrix of the transmitted signal depends on the availability of the chan-
nel knowledge H at the transmitter side.

Definition 1 (Multiplexing gain). The multiplexing gain is defined as,

r = lim
SNR→∞

E[C(SNR)]
log2 SNR

= min(nt ,nr),

where E[C(SNR)] represents the ergodic capacity obtained by averaging over the fading
distribution. The multiplexing gain indicates the maximal number of symbols that can be
simultaneously transmitted over a channel.

2.3. Shannon theorem and implications

Theorem 2 (Shannon theorem). The error-free transmission is possible as long as the trans-
mitted rate R does not exceed the channel’s capacity C.

The main implication of the Shannon theorem is that one can predict the error if the
channel’s capacity is known at the transmitter side. The knowledge of this capacity at the
transmitter side depends on the availability of the channel state information (CSI) at the
transmitter side. This CSI is feasible at the receiver side as the receiver can perfectly es-
timate the wireless channel gains using pilots sequences. However, the situation becomes
more complicated at the transmitter side as this CSI is not always feasible at the trans-
mitter side unless a large amount of feedback from the receiver side to the transmitter is
considered. The transmission strategy depends hence critically on this CSIT availability.

2.3.1. Full CSIT case: rate adaptation

When full CSIT is available at the transmitter side, the transmitted rate can be adapted to
the maximal capacity.

For a given channel realization, the maximal capacity of the MIMO channel can be
achieved using the so-called water-filling strategy [1]. This strategy uses the available CSI
to jointly diagonalize as shown in Figure 3 at the transmitter and the receiver side the chan-
nel H=UΛV† by creating as many parallel channels as nmin =min(nt ,nr). The transmitted
data vector x̃ that contains nmin symbols is projected on the right eigenvector space V i.e.,

x = Vx̃,

and is subjected to the following power constraint Tr
[
E[xx†]

]
≤ P. The received vector is

projected on the left eigenvector space U, i.e.,

ỹ = U†y = U†(Hx+ω) = U†UΛV†V x̃+U†ω,

= Λx̃+ z,

where z = U†ω∼ CN (0,N0 I) is a Gaussian complex vector as U† is unitary. Let Px denote
the diagonal covariance matrix Px =E[x̃x̃†]. The capacity of this equivalent MIMO channel
is then

C = max
P∗:∑i P∗i ≤P

nmin

∑
i=1

log
(

1+
P∗i λ2

i

N0

)
.
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Channel 

x̂

λ1

V†V
λmin

U U†

w1

wmin ŷx y

Figure 3: Water-filling: precoder and post-processing

The solution of this convex optimization problem is,

P∗i = max
(

0,µ− N0

λ2
i

)
, (1)

and the value of µ is determined using the power constraint ∑P∗i = P. The above steps are
summarized in Algorithm 1.

Algorithm 1 Water-filling algorithm

1: Perform SVD for the channel H = UΛV†.

2: Compute the power allocated over parallel channel: Px = E[x̃x̃†] = µI−N0Λ
−2.

3: Calculate optimal water level µ : Tr [Px] = P.

4: Compute the covariance matrix: Kx = E[xx†] = VPxV†.

2.3.2. No CSIT case: diversity techniques

Unlike the CSIT case, optimal power allocation across the antennas cannot be performed
in the absence of channel knowledge. In this case, a blind uniform power allocation is used
instead, i.e.,

Pi =
P
nt
. (2)

The instantaneous channel capacity is then

C = logdet
(

I+
SNR

nt
HH†

)
=

m

∑
i=1

log2

(
1+

SNR
nt

λi

)
(3)

where λi are the eigenvalues of the Wishart channel matrix HH† and q = min(nt ,nr). It
can be easily observed from (3) that the uniform power allocation does not penalize the
maximal multiplexing gain of min(nt ,nr) that can be obtained. Using a convenient scheme
it is always possible to transmit min(nt ,nr) symbols.
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Moreover, the transmitter cannot predict whether the channel is in deep fading or not if
no CSI is available at the transmitter side. In this case, there is a non-zero probability that
the transmitted rate exceeds the channel capacity and the two events defined in Definitions 2
and 3 should be considered.

Definition 2 (Outage event). The outage event occurs when the MIMO channel cannot
support the transmitted rate R, which means that R exceeds the capacity of the MIMO
channel C, i.e.,

O =
{

H : logdet(I+
SNR

nt
HH†)< R

}

The outage probability is defined as,

Pout(R) = P(O)

Definition 3 (Error event). The MIMO system is in error, when the decoded message is
different than the transmitted message. The error event is therefore defined as,

ε = {X̂ 6= X}

and the error probability is such that,

Perror = P(ε)

As a consequence of the Shannon theorem, when the outage event occurs, the system
is in error almost surely, which means that the outage region is necessarily included in the
error region, i.e.,

O ⊆ ε

For a given MIMO system operating at a rate R and under a power constraint P, the error
probability is always lower-bounded by the outage probability as shown in Figure 2.3.2.,
i.e.,

Perror ≥ Pout

The main objective is to design a coding scheme having an error probability that approaches
the outage probability.

2.4. Design challenges without CSIT

In order to exploit fully the available diversity and the multiplexing gain of the MIMO
channel, two approaches described in Paragraphs 2.4.1. and 2.4.2. have been considered in
the literature. For these two approaches, the transmitted signal are coded across the time
(during T time-slots) and the space (over the nt antennas) using the so-called space-time
coding. The transmitted codeword matrix X ∈ Cnt×T is carved from a codebook denoted
Xp having a size |Xp| and a rate R bits per channel use (bpcu) that is equal to

R =
1
T

log2 |Xp|.
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Prob

SNR

Outage

Error

1

Figure 4: Relationship between outage and error event

2.4.1. Fixed rate code construction

The first approach proposed by Tarokh et al. in [2] considers the case of fixed data rate R that
does not scale as SNR. This approach is more tailored to the Rayleigh fading distribution
and consists in the minimization of the error probability over all the fading distribution to
approach the outage probability behavior in the high SNR regime.

For a fixed rate R and using the eigenvalue distribution of the Wishart matrix HH†, it is
well known from that the outage probability scales in the high SNR regime as,

Pout(SNR) .
= SNR−d , where d = nt ×nr (4)

The slope d of the outage probability Pout(SNR) is called diversity gain. Notice that the
number of independent paths for a nt ×nr MIMO channel is also equal to d = ntnr. It can
be then deduced that the maximal diversity gain of a MIMO system corresponds simply to
the number of independent paths.

For a given channel realization, the error probability is upper-bounded using the union
bound [2, 15] such that,

Perror|H ≤
1
|Xp| ∑

i, j:i 6= j
Prob{Xi→ X j|H}

where Prob{Xi→ X j|H} denotes the pairwise error probability (PEP) between two code-
words Xi and X j. The PEP refers to the probability that a certain true codeword Xi ∈ Xp is
mistaken with another codeword Xi assuming that these two codewords are the only code-
words of the codebook. At high SNR, the most significant error event corresponds to the
case of neighboring Xi and X j, i.e.,

Perror|H ≤̇
1
|Xp|

max
i, j:i 6= j

Prob{Xi→ X j|H}.
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Finally, the upper-bound on the error probability can be deduced by averaging over all the
channel distribution. The goal of the space time code design is to minimize the worst case
of error probability to approach the outage probability behavior in the high SNR regime.

2.4.2. Approximately universal code construction

While the first approach is more tailored to the Rayleigh fading distribution, Zheng and
Tse proposed in [3] a powerful approach based on the high SNR characterization of the
dual benefits in term of diversity and spatial multiplexing using the diversity multiplexing
tradeoff (DMT) framework.

Definition 4. Given a point-to-point MIMO system, the gains in terms of diversity gain d

−d = lim
SNR→∞

logPout(R,SNR)
logSNR

and spatial multiplexing gain r

r = lim
SNR→∞

C(SNR)
logSNR

can be simultaneously obtained. But, there is a fundamental tradeoff dout(r) between these
two gains provided by any coding scheme.

Theorem 3 (Outage DMT of the MIMO channel). The DMT of nt×nr Rayleigh channel is
a piecewise-linear function connecting the points

(
r,d(r)

)
where r = 0, . . . ,min(nt ,nr) and

d(r) = (nt − r)(nr− r). (5)

Definition 5. A coding scheme Xp(SNR) with data rate R bits per channel use achieves a
multiplexing gain r and diversity gain d if the data rate R is such that

lim
SNR→∞

R(SNR)
logSNR

= r,

and the average error probability Pe(SNR) with maximum likelihood-decoding is such that

−d = lim
SNR→∞

logPe(SNR)
logSNR

.

For a given multiplexing gain r, the largest diversity supported by any coding scheme is
denoted by dXp(r).

For any coding scheme with rate scaling as r logSNR, the DMT of the code dXp(r) is
upper bounded by dout(r), i.e,

dXp(r)≤ dout(r). (6)
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3. Code construction for flat fading channel

In this section, we consider the case of a flat fading MIMO channel where the wireless
channel remains constant during all the duration of the transmission. The data bits streams
are assumed to be transmitted over this wireless channel without using any outer codes.

3.1. Flat fading channel model

We consider first the case of flat fading channel model depicted in Figure 5 that is given by

Y =

√
SNR

nt
HX+Z (7)

where X ∈ Cnt×T is a space time code drawn from code Xp of rate R per channel use,
Y∈Cnr×T is the received signal, Z∈Cnr×T ∼CN (0,1) is the additive noise and H∈Cnr×nt

is the channel matrix with i.i.d complex Gaussian CN (0,1) entries. The scaling factor θ is
chosen to ensure the power constraint,

E
[
‖X‖2

F
]
= T. (8)

channel

Space Time Block
Coding

ML decoder DemodulationModulation 

Figure 5: MIMO system

3.2. Optimal Maximum Likelihood (ML) MIMO decoder

For the SISO channel considered in Paragraph 2.1.1., the maximum likelihood decoder
should find the QAM constellation that minimizes,

x̂ = arg min
x∈QAM

|y−hx|2

The maximum likelihood decoder is also extended to the MIMO case. In this case, the
receiver should find the matrix X̂ in the family of space time code that minimizes the fol-
lowing Frobenius norm,

X̂ = arg min
C∈Xp

Tr[(Y−HC)(Y−HC)†]

Exhaustive research among all the possible space time codewords can be performed. Algo-
rithm with less complexity such as sphere decoder [11] and Schnorr-Euchner [12] are used
in practice.
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3.3. Space time code properties with fixed rate

In this section, we focus on space time codes design when the rate of the code is independent
of SNR, i.e. R(SNR) = R.

3.3.1. Error probability upper-bound

In this case, minimizing the average error probability over the distribution of the fading
channel is studied. The average PEP for the nt×nr MIMO channel has been derived in [2].

Theorem 4 (PEP upper-bound). Assuming that a maximum likelihood decoder is used, the
worst PEP is bounded by,

PEP≤ c SNR−d , (9)

where d is the diversity given by,

d = nr rank{∆X∆X†},

and c is the coding gain and is equal to,

c = 4d ( min
∆X 6=0

det
{

∆X∆X†})−nr .

The upper-bound of cSNR−d is minimized if:

(i)- The diversity order d = nr rank(∆X∆X†) is maximized;

(ii)- The coding gain c = 4d
(

min∆X 6=0 det
{

∆X∆X†
})−nr is minimized.

3.3.2. Code design criteria

As a consequence of the outage probability lower-bound, the maximal diversity order that
can be achieved by a coding scheme is equal to nt × nr. As shown in Theorem 4, the
diversity order of the coding scheme when using an ML decoder is nr× rank(∆X∆X†).
This means that the diversity corresponding to the multiple receive antennas of nr, known
as receive diversity, can be achieved regardless the used coding scheme. However, in order
to achieve full transmit diversity, the rank of ∆X∆X† should be equal to nt .

The gain in diversity is illustrated in Figure 6 where it is shown that significant gains can
be observed when increasing the slope of the error probability. Moreover, the minimization
of the coding gain in Theorem 4 results on a left shift of the error curve in Figure 6.

An optimal linear space time code should satisfy thus the following design criteria:

- Full rate symbol = min(nt ,nr)

- Full diversity, i.e. rank{∆X∆X†}= nt .

- Minimized coding gain c = 4d
(

min∆X6=0 det
{

∆X∆X†
})−nr .
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Outage cruve

1

SNR

Prob

Rank criteria maximizes the diversity order 

Diversity gain 

Determinant criteria minimizes the coding gain

SNR

−nr rank(∆X∆X†)︸ ︷︷ ︸
<ntSNR−nrnt

SNR−nrnt

Figure 6: Rank and determinant criteria

3.3.3. Examples of space-time codes

To illustrate this, we consider a MIMO channel having nt = 2 antennas at the transmitter
side and nr = 2 antennas at the receiver side. We assume that the channel is known only
at the receiver side but not at the transmitter side. The binary information b1b2 . . . are first
modulated using a 2m-QAM constellation x1x2x3x4 . . .. Then, the stream of data symbols is
coded using a nt ×T space time coding before being transmitted on the MIMO channel as
described in the channel model in (7).

The QAM symbols are carved from a normalized 2m-QAM constellation that are scaled
to match 1√

Es

[
2Z[i]+ (1+ i)

]
with

Es =
2(2m−1)

3
.

It can be easily checked that the minimal distance between two neighboring symbols is
dmin =

2√
Es

.

A. Spatial division multiplexing:

This method is also known as Vertical Bell Labs Space Time code (VBLAST) [13]. In this
case, two different symbols are transmitted on the different antennas without any coding at
each time slot. The corresponding codeword is therefore,

X =
1√
2

[
x1
x2

]

Note that the normalization factor 1√
2

is required in order to satisfy the power constraint in
(8). For this code, two symbols are transmitted during one time slot and hence the symbol



i
i

“Chap_ML_STBC” — 2012/12/6 — 10:35 — page 13 — #13 i
i

i
i

i
i

In: Communication Systems: New Research
Editor: Vyacheslav Tuzlukov pp. 13-25

ISBN 0000000000
c© 2013 Nova Science Publishers, Inc.

rate is 2 and is equal to the maximal multiplexing gain min(nt ,nr) = 2. The diversity of this
code is,

d = nr rank{∆X∆X†} with ∆X 6= 0.

The difference codeword matrix is,

∆X = X−X′ =
1√
2

[
x1− x′1
x2− x′2

]

is a rank one matrix. The diversity of this code is then only equal to 2. Finally, the minimal
determinant of the SDM code is,

min
∆X 6=0

det(∆X∆X†) = min
x1 6=x′1

1
2
|x1− x′1|2 =

1
2

d2
min =

2
Es

and the PEP is upper-bounded by, The maximal error probability is therefore,

PEP≤ 4E2
s SNR−2 .

B. Repetition code :

For the repetition code described in [15], each data symbol is repeated during two time slots
and the corresponding codeword is,

X =

[
xi 0
0 xi

]
.

Note that in this case, the power constraint in (8) is satisfied without need to multiply by
a normalization factor as for the SDM case. It can be observed that for the repetition code
only one symbol is transmitted during T = 2 time slots and then the symbol rate is 1/2
which is less than the maximal multiplexing gain of 2. The diversity of this code can be
computed from Theorem 4 as,

d = nr rank{∆X∆X†} with ∆X 6= 0.

The difference codeword matrix is,

∆X = X−X′ =
[

x1− x′1 0
0 x1− x′1

]
.

and its determinant is

det(∆X∆X†) = |x1− x′1|4 6= 0 if x1 6= x′1,

The non zero matrix is therefore full rank and the diversity that can be extracted is 4. The
code extracts all the diversity of the 2×2 MIMO system but not all the degrees of freedom.
The minimum of det(∆X∆X†) is,

min
∆X 6=0

det(∆X∆X†) = min
x1 6=x′1
|x1− x′1|4 = d4

min =
24

E2
s
.
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The error probability is then upper-bounded by,

PEPmax = cSNR−4,

where
c = 4d(min

∆X6=0
det(∆X∆X†))−nr = E4

s .

The maximal error probability is therefore,

PEP≤ E4
s SNR−4 .

C. Alamouti code

The Alamouti code structure in [14] is given by,

X =
1√
2

[
x1 −x∗2
x2 x∗1

]

Notice that the normalization factor of 1√
2

is also required for the Alamouti case to satisfy
the power constraint in (8). For the Alamouti code, two different symbols are transmitted
during 2 time slots. The symbol rate of this code is then equal to 1 symbol per time slot
which is not optimal in term of its multiplexing gain for the 2× 2 MIMO case. However,
for the 2× 1 MISO configuration, this code is full rate. The diversity of this code can be
computed by,

d = nr rank{∆X∆X†} with ∆X 6= 0.
where

∆X = X−X′ =
1√
2

[
x1− x′1 −(x2− x′2)

∗

x2− x′2 (x1− x′1)
∗

]
.

The determinant of ∆X∆X† is,

det(∆X∆X†) =
1
2
(|x1− x′1|2 + |x2− x′2|2)2 6= 0 if (x1,x2) 6= (x′1,x

′
2)

This means that rank{∆X∆X†}= 2 for ∆X 6= 0 . The diversity achieved by this code is,

d = 2×2 = 4.

For 2× 2 MIMO system, the Alamouti code extracts the diversity gain but not the full
multiplexing gain. The minimum of det(∆X∆X†) is,

min
∆X 6=0

det(∆X∆X†) =
1
2

min
x1 6=x′1,x2 6=x′2

(|x1− x′1|2 + |x2− x′2|2)2 =
1
2

d4
min =

23

E2
s
.

The PEP is then upper-bounded by,

PEP≤ cSNR−4,

where
c = 4d(min

∆X 6=0
det(∆X∆X†))−nr = 4E4

s .

The maximal error probability is therefore,

PEP≤ 4E4
s SNR−4 .
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D. Golden code

This code was introduced in [5]. The codeword matrix of the Golden code X = 1√
2
×C

where,

C =
1√
5

[
α(x1 +θx2) ᾱ(x3 + θ̄x4)
iα(x3 +θx4) ᾱ(x1 + θ̄x2)

]
,

and θ = 1+
√

5
2 , θ̄ = 1−

√
5

2 , α = 1+ i− iθ and ᾱ = 1+ i− iθ̄.
We can verify that θθ̄ = −1 and αᾱ = 2+ i. This means that using the Golden code the
combined symbols sent at each antenna has energy equal to 1 and therefore a normalization
factor of 1√

2
is required to satisfy (8). Using the Golden code structure, it can be seen that

four symbols are transmitted during T = 2 time slots. The symbol rate is therefore equal
to 2. The diversity of this code can be computed by,

d = nr rank{∆X∆X†} with ∆X 6= 0.

The difference codeword matrix is given by,

∆C =C−C ′ =
1√
5

[
α((x1− x′1)+θ(x2− x′2)) ᾱ((x3− x′3)+ θ̄(x4− x′4))
iα((x3− x′3)+θ(x4− x′4)) ᾱ((x1− x′1)+ θ̄(x2− x′2))

]
.

The minimal determinant of this matrix is min∆C 6=0 det(∆C) = 2+1i
(
√

5)2 and

min
∆C 6=0

det(∆C∆C†) =
|2+1i|2

25
=

1
5
.

The matrix is therefore full rank and the maximal diversity is 4. The Golden code extracts
the full diversity of the 2× 2 MIMO system and the full multiplexing gain. The error
probability is upper-bounded by,

PEP≤ cSNR−4,

where
c = 4d

(
min
∆X6=0

det(∆X∆X†)
)−nr

= 100 E4
s .

The maximal error probability is,

PEP≤ 100 E4
s SNR−4 .

D. Codes comparison:

In order to have a fair comparison, the four above schemes should be compared using the
same bit rate, for example 4 bits per time slot. As we can see from the above discussion,
these codes have different symbol rate. In order to achieve the same bit rate per channel use,
different 2m-QAM constellation should be used to map the symbols of the different space
time coding schemes. The VBLAST code and the Golden code have a symbol rate of 2.
The bit rate when symbols are mapped using 2m-QAM constellation is 2m and is equal to 4
if m = 2. Symbols of these two schemes should be then mapped using QPSK constellation.
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The repetition code has a symbol rate of 1/2. The bit rate of this code when using 2m-
QAM constellation is 1/2m and is equal to 4 if m = 8. This corresponds then to a 256QAM
constellation. The Alamouti code has a symbol rate of 1. Using a 2mQAM constellation,
the bit rate of m is equal to 4 if m = 4 which corresponds to a 16QAM constellation.

Table 1 summarizes the PEP upper-bound of the schemes with their corresponding con-
stellation. As it can be seen from Table 1, the upper-bound on the pairwise error probability
expression depends on the choice of the constellation. constellation.

Space Time Code Constellation PEP upper-bound
VBLAST QPSK 16 SNR−2

Repetition code 256QAM 1704 SNR−4

Alamouti code 16QAM 4 104 SNR−4

Golden code QPSK 400 SNR−4

Table 1. Upper-bound on PEP for a bit rate of 2 bpcu.

The error performances of these space time code are illustrated in Figure 7. At very low
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Error Probability for 2x2 MIMO system

Golden code
Alamouti code
VBLAST
Repetition code

Figure 7: Comparison between error probability for the 2×2 MIMO scheme with a bit rate
of 2 bpcu.

SNR, the SDM has better coding gain then both Alamouti schemes and the Golden code
(Table 1) and has a better PER than the Golden code and the Alamouti code. However, for
the high SNR regime, the diversity gain dominates the coding gain. As the Alamouti scheme
is not a full rate scheme, using a 16QAM constellation instead of QPSK constellation in
order to achieve the same spectral efficiency induces a loss in term of coding gain. The
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gain of the Golden code in diversity and in coding gain can be also observed in Figure 7.
The repetition code has a full diversity of 4. However its coding gain in Table 1 is very
high as a 256QAM constellation is used to compensate the loss in the rate symbol. This
high coding gain dominates the error probability in the low SNR regime and the repetition
code performs badly compared to the SDM and the other codes (Figure 7). In the high SNR
regime, the gain diversity of the code becomes more dominant and the slope of the error
probability becomes higher and compensate the loss in SNR compared to the SDM case.

3.4. Approximately universal code over a flat fading channel

The approximately universal code design provides a structured code design criterion that
achieve the DMT [6]. This design criteria is derived from the performance of the code over
the worst-channel case that is not in outage. Universal codes achieve reliable communi-
cation over MIMO channel realization that are not in outage. In the following, we review
from [5, 6] the non-vanishing design criteria and the DMT-achieving construction of the
perfect space time code in [4].

3.4.1. Sufficient condition for DMT achievability

Theorem 5. A coding scheme Xp(SNR) is approximately universal over the MIMO channel
if and only if, for every pair of distinct codewords

µ2
1µ2

2 . . .µ
2
n ≥

c
2R(SNR)+o(logSNR) , c > 0 (10)

where n = rank{HH†}= min(nt ,nr) and µ2
1 ≤ . . .≤ µ2

n are the m eigen-values of the code-
words difference matrix ∆X∆X†.

3.4.2. Non Vanishing Determinant (NVD) code definition

The non-vanishing determinant (NVD) criteria is a particular form of the approximately
universal condition defined in Theorem 5. Before defining the NVD code structure in [4],
we first define the normalized space time code X by,

X = θX̄, (11)

where X̄ ∈ X̄p(SNR) refers to the normalized space time code and θ is the scaling factor
that ensures the power constraint in (8).

Definition 6 (NVD codes). A coding scheme X̄p(SNR) is called a rate-n NVD code if
Xp(SNR) satisfies the following properties

- Each entry x̄i, j of the Xp(SNR) is a linear combination of symbols from A(SNR),
where A(SNR) is a universal code over the scalar channel with data rate RA(SNR)
bits PCU. The quadrature amplitude modulation (QAM) constellation such as QPSK,
16QAM, 64QAM,... or HEX constellation are usually used as scalar universal codes.

- The average number of symbols transmitted by Xp(SNR) is equal to n symbols per
channel use.
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- The following NVD property is satisfied

det
(
∆X̄∆X̄†) ≥̇ SNR0 (12)

3.4.3. Scaling factor θ for NVD codes

For a non-vanishing determinant code, the average number of symbols transmitted by
Xp(SNR) is n = min(nt ,nr) symbols per channel use and can be defined as

n =
1
T

log|A | |Xp|, (13)

where |Xp| denotes the total number of possible codewords in Xp and |A | denotes the total
number of constellation symbols in A . Equivalently,

|Xp|= |A |nT . (14)

Let A be the 2mQAM constellation1 with size |A |= 2m, such that

A =
{

a+ ib, |a|, |b| ≤ m−1 a,b are odd
}
.

The rate of the space time code R = r logSNR can be related to |Xp| by R = 1
T log2 |Xp| =

r logSNR . or equivalently

|Xp|= SNRTr . (15)

By combining (14) and (15), it follows that,

|A |= SNR
r
n . (16)

As each entry x̄i, j is a linear combination of symbols sl carved from a 2m-QAM constella-
tion, i.e

x̄i, j =
n

∑
l=1

alsl, al ∈ C and ‖a‖2 = ‖[a1 . . .an]‖2 = 1

then it can be easily checked that ,

E[|x̄i, j|2] = ‖a‖2E[|s|2] = Es =
2(|A |−1)

3
.
= SNR

r
n .

Using the normalization constraint in (8), it follows that

θ
2 .
= SNR−

r
n . (17)

3.4.4. DMT of the code

Lemma 1. NVD codes achieve the DMT for nt×nr MIMO configuration when nt ≤ nr, and
for full rate codes (n = nt).

Proof. The determinant of the non normalized space time code is such that

det
(
∆X∆X†)= θ

2nt det
(
∆X̄∆X̄†) .

By replacing the scaling factor θ2 by its value in (17) with n = nt , the NVD property is then
satisfied i.e.,

det
(
∆X∆X†)≥̇SNR−r SNR0 .

=
c

2R(SNR)+o(SNR) .

1The same value of scaling factor is valid using HEX constellation.
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3.4.5. NVD code construction: Perfect space time codes

Perfect space time codes are full rate codes (n = nt) constructed from cyclic division alge-
bras (CDA) defined as following. Let L=Q(i,θ) be a cyclic extension of degree nt on the
base field Q(i). The generator of Galois group Gal(L/Q(i)) is denoted by σ, and assume
that Gal(L/Q(i)) = {σ0, . . . ,σnt−1}. Let γ ∈Q(i) be such that γ,γ2, . . . ,γnt−1 are non-norm
elements in L. The CDA of degree nt is given by

C =
(
L/Q(i),σ,γ

)
.

Each element X̄ of C is given by,

X̄ =




x1 x2 . . . xnt

γσ(xnt ) σ(x1) . . . σ(xnt−1)
...

...
γσnt−1(x2) γσnt−1(x3) . . . σnt−1(x1)


 (18)

where xi ∈ I⊂ OL is a linear combination of symbols carved from a QAM or Hex constel-
lation, OL being the ring of the integers, and I is an properly chosen ideal that preserves
the constellation shaping. As perfect space time codes are linear codes constructed from a
CDA, then

min
∆X̄6=0

det{∆X̄∆X̄†} ≥ δ,

where δ is the inverse of the discriminant of Q(θ) (refer to [4] for more details), and is
independent of the constellation size. The NVD property in (12) can be easily verified,
such that the determinant of the non-normalized space time code is such that,

det
(
∆X∆X†)≥ δ

2R(SNR)+o(SNR) .

4. Practical insights on the use of MIMO diversity techniques

Unlike the simplified flat fading channel model considered in previous sections, the indus-
trial transmission schemes are based on more realistic assumptions that include the use of
the bit interleaved coded modulation scheme and a multi-tap channel. This section will re-
view the result in [10] where the impact of concatenating multidimensional coding scheme
with outer codes is studied.

4.1. BICM system model

The block diagram of the considered system based on the IEEE 802.11n transmission
scheme is depicted in Figure 8. During the transmission, the binary information elements b
are first encoded by a binary code of rate Rc e.g. a convolutional code C with free distance
dfree and then interleaved by a bit interleaver π. The coded and interleaved sequence c is fed
into the 2m-QAM gray mapper and is mapped into a sequence of symbols x. The resulting
symbols are coded by a space time block codeword (STBC) Xp that associates to each 1×sr
symbol vector a nt × s matrix where s is the coding duration of the STBC known also as
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STBC spreading factor and r is the number of symbols transmitted during one time slot i.e.,
the rate of the STBC2. The coded space-time codes are finally transmitted on a multiple
antenna channel H with nt transmit antennas and nr receive antennas.

DecoderCoding (STBC)

Convolutional

code C
Space Time BlockInterleaver

π

Modulation

2m-QAM decoder

ML soft Deinterleaver

π−1

Viterbi

Figure 8: BICM MIMO system

Channel model

The two cases where the channel is either flat fading or selective in frequency are addressed.
The flat fading channel models the case when the channel remains constant during all the
duration of coding. For the flat fading channels, N space time block codewords are transmit-
ted. Each STBC has a coding duration equal to s time slots. The second considered model
is the frequency selective fading which models the case when the bandwidth of the trans-
mitted signal exceeds the coherence bandwidth of the channel. For a frequency selective
channel with a delay profile of L taps, a MIMO-OFDM system is considered. The channel
is therefore decomposed into N parallel channels, H( fk) = H(e j2π fk) with k = 0 . . .N− 1
that are statistically correlated where fk is the channel frequency subcarrier. We assume that
the channel is flat over each subcarrier fk and that each space-time codeword is transmitted
over one subcarrier fk where k = 0 . . .N−1. Finally, to simplify the notation for both cases
of flat fading and frequency selective channel, we refer by k the indexing of the space time
codewords that will be used also to index the channel realization over the k-th STBC, i.e.,
H(k) = H(sk+ j) with j = 0 . . .s−1.

Bit interleaver

Before detailing the interleaver structure, we recall that each block STBC is associated to a
vector of 1× sr symbol vector or equivalently to a bit vector of 1×msr.
The bit interleaver can be modeled as π: k

′ → (k, i) where k
′

denotes the original ordering
of the coded bits ck′ , k denotes the index of the STBC matrix and i indicates the position of
the bits ck′ in the corresponding 1×msr bit vector associated to the k-th STBC.

At the receiver, the received coded space time codeword is given by

Y(k)[nr×s] = H(k)[nr×nt ]C(k)[nt×s]+Z(k)[nr×s], (19)

where Z(k)∼ CN (0,N0Inr) is the complex additive Gaussian noise.

ML soft decoder

The maximum likelihood (ML) soft decoder generates for each coded bit ck,i two metrics:
λi

ck=0 and λi
ck=1. Theses metrics correspond to the log-MAP (Maximum A-Posteriori) com-

2We recall from [3] that r ≤min(nt ,nr)



i
i

“Chap_ML_STBC” — 2012/12/6 — 10:35 — page 21 — #21 i
i

i
i

i
i

In: Communication Systems: New Research
Editor: Vyacheslav Tuzlukov pp. 21-25

ISBN 0000000000
c© 2013 Nova Science Publishers, Inc.

puted over one codeword (refer to [7] for more details on λ-metrics), and are given by:

λ
i(ck) = log ∑

C∈X i
ck

p(Y(k)
∣∣H(k),C),

= log ∑
C∈X i

ck

exp−‖Y(k)−H(k)C(k)‖2
F .

These metrics can be well approximated by

λ
i(ck)≈ min

C∈X i
ck

‖Y(k)−H(k)C‖2
F, (20)

where X i
b denotes the constellation subset X i

b = {C ∈ Xp : li(C) = b} and li(C) is the ith bit
in the corresponding 1×msr bit vector associated to C. The problem in (20) is a variant of
the well known closest problem and can be solved using low complexity algorithms such
as accelerated decoder in [16]. Finally, λ metrics associated to the interleaved bits are de-
interleaved and are used by the Viterbi decoder to decode the information bits by finding
the shortest path in the trellis according to,

ĉ = argmin
c ∑

k′
λ(ci

k). (21)

4.2. MIMO gains for flat fading MIMO BICM channels

The first practical scenario is the case of MIMO-BICM system and a transmission over a
flat fading channel. For this scenario, an upper-bound on the pairwise error probability was
derived in [10] for both cases when MIMO symbols are coded with a perfect space time
code and the case when there is no space time coding for the MIMO symbols i.e. the case
of spatial division scheme (SDM).

In the first case when perfect space time codes are used, the PEP is upper-bounded at
high SNR by,

PEP≤
(
dfreeδ

)−nr
(
Es
)nt nr SNR−nt nr . (22)

On the other hand, when no space time code is used (SDM scheme), the PEP can be
upper-bounded by

PEP≤
(
dfree

)−nr
(
Es
)nr SNR−nr . (23)

From these PEP upper-bound, it can be easily seen that the perfect codes extract the
full MIMO diversity ntnr. However, without MIMO coding (the spatial division schemes),
the diversity is only nr. To illustrate this, we consider the case of 2×2 MIMO system with
QPSK constellation. The values of the upper-bounds in (22) and (23) can be written in the
form γas SNR−d and are summarized in Table 3 for different values of free distance.

As it can be seen from Table 3, the asymptotical upper-bound gain γas of the SDM is
lower than the one of the GC. However in the high SNR regime, this asymptotical upper-
bound gain will not be significant and the diversity gain of the GC becomes more dominant.
Two main remarks can be deduced: the first one is that at the high SNR the GC with a weak
convolutional code gives better performance than the SDM with a strong outer code. The
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Coding scheme PEP upper-bound
GC without CC 400SNR−4

SDM without CC 4SNR−2

GC with dfree = 5 16SNR−4

SDM with dfree = 5 0.16SNR−2

GC with dfree = 10 4SNR−4

SDM with dfree = 10 0.04SNR−2

Table 2. Theoretical upper-bound for a 2×2 flat fading MIMO-BICM with QPSK symbols

second remark is that the gain of the GC vs the SDM schemes can be observed at a moderate
PEP range when no convolutional code is used. This will not be the case in a MIMO-BICM
system and especially for higher values of dfree. Reaching very low target PER will be very
hard to simulate in a real simulation context where reasonable target error rate are often
addressed.

4.3. MIMO gains for frequency selective MIMO BICM channels

The second scenario studied in [10] is the case of BICM-MIMO system with frequency se-
lective fading channel. When MIMO symbols over each subcarrier are coded using perfect
space time codes, the PEP is upper-bounded at high SNR by,

PEP≤ G SNR−nrnt min(L,D), (24)

where G =
(
α δ
)−nrdfree(Es)

nt nr min(L,D) and D≤ dfree denotes the number of different subcar-
riers on which erroneous bits are received. The interleaver design maximizes the parameter
D. The parameter α is a constant that depends on the covariance matrix.

For the case, when no space time code is used, the PEP is bounded such that,

P(c→ ĉ)≤
(
α
)−nrdfree(Es)

nr min(L,D) SNR−nr min(L,D), (25)

where α depends on the covariance matrix.
The numerical value of the upper-bounds in (24) and (25) are illustrated in Table 3 for

the case of 2× 2 MIMO with QPSK symbols over a frequency fading channel with L = 6
where the values of D1 ≤ 5 and D2 ≤ 10 depend on the used interleaver. The same remarks

Coding scheme PEP upper-bound
GC with dfree = 5 (5α−1)10 (SNR/2)−4min(6,D1)

SDM with dfree = 5 α−10 (SNR/2)−2min(6,D1)

GC with dfree = 10 (5α−1)20 (SNR/2)−4min(6,D2)

SDM with dfree = 10 α−20 (SNR/2)−2min(6,D2)

Table 3. Theoretical upper-bound for a 2×2 MIMO with QPSK symbols over a frequency
fading channel with L = 4.

as for the flat fading channel concerning the difficulty of observing the additional diversity
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Figure 9: Golden Code vs SDM in IEEE 802.11n context

gain of the GC can be observed also here. Moreover, this will be become more difficult to
observe than the flat fading channel as in this case both schemes gain in diversity.

The performance of the Golden code versus SDM has been evaluated in the IEEE
802.11n context in terms of packet error rate (PER) versus SNR, for a packet length of
1000-bits. In the following, SNR gain will be related to a PER of 10−2. The packet error
rates in Figure 9 are evaluated over channel D using QPSK and 16QAM constellation. The
channel D is characterized by a 50ns rms delay spread and 18 taps, and then by signifi-
cant frequency diversity. In the IEEE 802.11n context, the convolutional code [133 171]
with a coding rate of Rc = 1/2 is used with dfree = 10. No additional gain is observed at
a PER = 10−2. The channel B in the IEEE 802.11n standard can be assimilated to a flat
fading channel, for which the additional gain using a convolutional code with high free
distance (dfree = 10) cannot be observed at reasonable PER.

4.4. Practical limits of space time codes use in a standard context

Recent standards that use MIMO system such that IEEE 802.11n and IEEE 802.16e aim to
increase the throughput and the reliability of the system. However, increasing the reliability
comes often at the expense of increased complexity at both transmitter and receiver side.
Scarifying the complexity order can be done if promising gains at reasonable PER range
are observed. Although theoretically, using the upper-bound on the PEP at high SNR, one
expects that the error probability of these codes should be shifted more to the left com-
pared with the SDM case, practical assumptions are more realistic, and address generally a
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moderate SNR regime and moderate range of PER.
For the flat fading case, when no outer code is used, the huge gain observed by the

Golden code over all other known code make it promising to be used in such systems.
However, when a complete chain as BICM-MIMO-OFDM system is considered, the situ-
ation become considerably different. As we show in a BICM-MIMO-OFDM system, the
diversity of BICM-OFDM system can be extracted when no space time code is used. Ad-
ditional diversity can be provided by using perfect space time codes over each subcarriers.
This additional diversity comes at the expense of an increased lattice decoder, i.e. instead
of using a 2nt ×2nt ML soft decoder a 2n2

t ×2n2
t is required. Moreover, the impact of this

additional diversity cannot be unfortunately observed at moderate range of PER.

5. Concluding remarks

In this chapter, we reviewed the principle basis on the conception of multiple input multiple
output systems. The knowledge of the channel knowledge at the transmitter side is crucial
for this design. The case of a flat fading MIMO channel when the channel remains constant
during all the duration of the transmission was firstly addressed. For the full CSIT case,
we showed how the optimal power allocation over the eigen-channel modes optimizes the
capacity of the channel. When no CSIT is available, we presented the diversity techniques
used to benefit from the MIMO gains in term of diversity and multiplexing gain. The
conception of these diversity techniques relies on two approaches. The first approach is
based on the minimization of the pairwise error probability upper bound and yields to the
well known space time code design criteria by Tarokh et al. (the rank and the determinant
criteria) when the fading paths are assumed to be Rayleigh distributed. The second approach
relies on the characterization of the diversity multiplexing tradeoff and is independent of the
fading distribution. The construction of the perfect space time code family from the cycle
division algebra that fully achieves these two gains is then detailed and the gain of the
2×2 MIMO Golden code are illustrated. Finally, we reviewed from [10] the impact of the
concatenation of these multi-dimensional space time codes with powerful outer codes. The
upper-bound on the PEP derived in [10] when using perfect space time codes is much lower
than the one with space time codes. This should be traduced normally by a shift to the left
of the packet error rate probability in the log-log scale. For the 2× 2 MIMO channel, we
show that these gains cannot be observed in the IEEE 802.11n context at a reasonable PER
or SNR.

References

[1] I. E. Telatar, “Capacity of multi-antenna gaussian channels,” IEuropean Transactions
on Telecommunications and Related Technologies, vol. 10, no. 6, pp. 585–596, 1999.

[2] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space time codes for high data rate
wireless communication : performance criterion and code construction,” IEEE trans-
actions on information theory, vol. 44, no. 2, pp. 744–765, march 1998.



i
i

“Chap_ML_STBC” — 2012/12/6 — 10:35 — page 25 — #25 i
i

i
i

i
i

In: Communication Systems: New Research
Editor: Vyacheslav Tuzlukov pp. 25-25

ISBN 0000000000
c© 2013 Nova Science Publishers, Inc.

[3] L. Zheng and D. Tse, “Diversity and multiplexing : A fundamental tradeoff in multiple
antenna channels,” IEEE Transactions on Information Theory, vol. 49, no. 5, pp. 1073
– 1096, may 2003.

[4] F. Oggier, G. Rekaya, J.-C. Belfiore and E. Viterbo, “Perfect space time block codes,”
IEEE transactions on information theory, vol. 52, no. 9, septembre 2006.

[5] J. C. Belfiore, G. Rekaya and E. Viterbo, “The Golden Code: A 2 × 2 full rate space
time code with non vanishing determinants,” IEEE Transactions on information the-
ory, vol. 51, no. 2, pp. 1432 – 1436, april 2005.

[6] P. Elia, K. R. Kumar, S. A. Pawar, P. V. Kumar and H.-F. Lu, “Explicit space time
codes achieving the diversity multiplexing gain tradeoff,” IEEE Transactions on in-
formation theory, vol. 52, no. 9, pp. 3869 – 3884, sept. 2006.

[7] G. Caire, G. Taricco and E. Biglieri, “Bit-Interleaved Coded Modulation,” IEEE trans-
actions on information theory, vol. 44, no. 3, may 1998.

[8] N. Gresset, L. Brunel and J. Boutros, “Space-time coding techniques with bit inter-
leaved coded modulation over block-fading MIMO channels,” IEEE Transactions on
Information Theory, vol. 54, no. 5, pp. 2156–2178, may 2008.

[9] E. Akay and E. Ayanoglu, “Achieving Full Frequency and Space Diversity in Wireless
Systems via BICM, OFDM, STBC, and Viterbi Decoding,” IEEE transactions on
communications, vol. 54, no. 12, pp. dec 2006.

[10] L. Mroueh, S. Rouquette-Léveil and J-C. Belfiore, “Application of perfect space time
codes: PEP bounds and some practical insights," in IEEE transaction on communica-
tion, vol. 60, no. 3, pp 747-755, march 2012.

[11] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels",
IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1639-1642

[12] E. Agrell, T. Eriksson, A. Vardy and K. Zeger, “Closest point search in lattices,” IEEE
transaction on Information Theory, vol. 48, no. 8, pp. 2201-2214, 2002

[13] G. J. Foschini, “Layered space-time architecture for wireless communication in a fad-
ing environment when using multiple antennas,” Bell Lab. Tech. Journal,vol. 1, no. 2,
pp. 41–59, 1996

[14] S.M. Alamouti, “A simple transmit diversity technique for wireless communica-
tions,”IEEE Journal on Selected Areas in Communications, vol.16, no.8, pp.1451-
1458, Oct 1998

[15] D. Tse and P. Viswanath, Fundamentals of wireless communications. Cambridge Uni-
versity Press, 2005.

[16] J. Boutros, N. Gresset, L. Brunel and M. Fossorier, “Soft-input soft-output lattice
sphere decoder for linear channels,” IEEE Globecom, dec 2003.


