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Abstract

In the course of understanding the functioning of cellular processes, modelling frame-
works for biological networks are mandatory in order to reason on the models and
their properties. One of the main problems with such modelling framework is to de-
termine the dynamics of gene regulatory networks (GRN). Formal techniques, most
of them based on model checking, have been applied to select valid dynamics, that
is dynamics consistant with biological experiments expressed by temporal properties.
The problem is that these formal techniques rapidly become intractable because dy-
namics associated to the GRN are most of the time very numerous. Recently, it has
been observed in in vivo experiments and in genomic and transcriptomic studies, that
spatial informations are necessary to better understand both the mechanisms and the
dynamics of GRN. In this paper we propose to extend the modelling framework of R.
Thomas in order to introduce such spatial information between genes. We will show
how these further informations allow us to restrict dynamics of GRN. We will illustrate
our approach on two classical models of GRN: the mucus production in Pseudomonas

aeruginosa and the lytic/lysogenic switch in the lambda phage.

Keywords: Gene regulatory networks, Spatial information, Dynamics, Discrete math-
ematical modelling.

1 Introduction

To understand genetic regulatory networks, modeling frameworks and simulation tech-
niques are often useful since the complexity of the interactions between constituents
of the network (mainly genes and proteins) makes intuitive reasoning difficult dJ2002.
Nevertheless, simulation techniques are in practice difficult to manage because biolog-
ical systems are either large, complex or partially known. Indeed, the lack of precise
knowledge about the system (are all constituents/interactions taken into account?
Which values are given to parameters? Which is the confidence on these parame-
ters?...) is one of the more accurate difficulties to handle computationally all possible
hypotheses on the system. Most of the time, parameters of the model have to be in-
ferred from a set of biological experiments. Unfortunately these parameters are rarely
measurable and modelling process has to focus on the search of values that lead to
a dynamics which is coherent with experiments. Hence, it seems necessary to em-
bed within the model some biological knowledge in order to reduce the complexity of
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searching parameters. The notion we are interested in is the spatial relation between
genes.

Indeed, recent experiments have shown that both in eukaryotes [6] and in bacte-
ria [2] gene transcription occurs in discrete foci where several RNA polymerases (the
transcribing elements) co-localize. This suggests that genes tend also to co-localize in
space in order to optimize transcription rates. Such scenario is supported by genomic
and transcriptomic analysis [7, 3]. These have revealed that the genes that are reg-
ulated by a given transcription factor and the gene that codes for the transcription
factor tend to be located periodically along the DNA [7]. In this way, the genes can be
easily co-localized in the three-dimensional space according to a solenoidal structure,
even in the presence of several kinds of transcription factors [8]. As a result, the effect
of a transcription factor is enhanced due to the spatial proximity of the targets. This
phenomenon is reminiscent of the local concentration effect that has been formalized
by Müller-Hill [9] a decade ago. Local concentration simply means that the interaction
between molecules that are able to interact with each other is all the more efficient
when molecules are close to each other. This straightforward statement is crucial to
understand genome organization because genomes seem to have evolved in order to
optimize the proximity of reactive groups [9, 8, 10].

In this article, we propose a simple scheme in order to include the notion of dis-
tances into genetic regulatory networks (GRN) and to study their effect upon the
dynamics of the network. Our approach is based on the discrete modeling of genetic
regulatory networks that has been introduced by René Thomas. In this type of models,
a discrete concentration level, called expression level, is associated to each gene of the
GRN. This abstracts the continuous concentration of the protein that is coded by the
gene. Within this scope, the notion of distance will help us to solve dilemma and con-
flicts during the search for logical parameters that define the dynamics of regulatory
networks.

Within the scope of spatial information, two aspects will be discussed in this article:
privileged interaction and cluster of genes.

• The notion of cluster expresses the notion of co-regulation, that is a set of
spatially closed genes that are expressed at the same time due to the expression
of a single regulating gene (i.e. the presence of a single transcription factor).

• the notion of privileged interaction is an ubiquitous concept in biology. For
instance, specific interactions (e.g. between a transcription factor and DNA)
in contrast to non-specific interactions, local concentration phenomena, short
distances between a gene (or a protein) and the genes it regulate are examples
of privileged interactions that maintain the good operation of cells.

In the case of spatial information, privileged interactions are mainly based on
the notion of gene neighbourhood, which measures the proximity of two given genes
modulating the interaction force between the two genes. If all genes are close to
each other, or conversely are far away from each other, then the resulting dynamics is
identical to the classical approach of Renée Thomas. In contrast, the notion of distance
will allow us to reduce, eventually to one, the number of dynamics to consider.

We derive results for Boolean GRNs, where genes have only two expression levels,
and multivalued GRNs where genes have a finite number of expression levels. In
particular, we study two aspects: i) the static part of the model which describes the
interaction occurring in the system, interaction graphs being a classical representation
of this aspect , and ii) the dynamics resulting from these interactions. We illustrate
our results on three classical models of GRN: the mucus production in Pseudomonas
aeruginosa, the lytic/lysogenic switch in the lambda phage and the functioning of the
operon lactose.
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Fig. 1: Example of interaction graph

2 Interaction graph

Interaction graphs are a classical discrete representation of the static part of a genetic
regulatory network. It is common to Boolean and multivalued GRN. The GRN is
represented by an oriented graph where nodes abstract the proteins or genes which play
a role in the system and edges abstract the known interactions inside the considered
system. An interaction (a → b) can be either an activation or an inhibition, which will
imply different behaviours considering the dynamics: in an activation, the increase of
the expression level of a leads to an increase of the expression level of b, the edge is
labelled by the sign + and a is an activator of b; in an inhibition, the increase of a

leads to a decrease of b, the edge is labelled by the sign − and a is an inhibitor of b.

Definition 1 (Interaction graph)
An interaction graph is a labeled directed graph G = (V, E,S) where :

1. V is a finite set whose elements are called variables.

2. E ⊆ V × V is the set of interactions. For any i ∈ V , V −
i denotes the set of

predecessors of i, that is elements of V which have an action on i and V +
i denotes

the set of successors of i, that is elements of V on which i has an action:

V
−(i) = {j|j ∈ V, (j, i) ∈ E} V

+(i) = {j|j ∈ V, (i, j) ∈ E}

3. S : E → {+,−} associates to each interaction its sign. An interaction can be
either an activation (+ sign) or an inhibition (− sign).

Definition 2 (Activators and inhibitors)
Let G = (V, E, S) be an interaction graph, and let i ∈ V be a gene. We denote by
A(i) (resp. I(i)) the set of activators (resp. inhibitors) of i:

A(i) = {j|j ∈ V
−(i), S(j, i) = +} I(i) = {j|j ∈ V

−(i), S(j, i) = −}

Example 1 (Example of interaction graph)
Let us exemplify definition 1 with the toy interaction graph from figure 1 where a gene
i is inhibited by j1 and j2 and activated by k. The sign of each interaction is directly
expressed by labelling edges.

3 Dynamics

The dynamics of a GRN consists in the evolution of each gene expression level step by
step. Two kinds of dynamics are usually considered: either Boolean (genes have only
two levels of expression) or multivalued (genes have several levels of expression). In
both cases, several dynamics can be associated to an interaction graph, and the main
problem is to reduce the number of dynamics we have to consider.
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In reality, the evolution of a given gene expression level does not depend on all the
genes of the GRN, but only on the genes which have an action on the given gene, that is
its predecessors. More precisely, not all the predecessors of a given gene have an effect
on its expression level, but only the predecessors with a sufficient expression level,
the interaction is then said to be effective. The notion of sufficient expression level is
detailed in the following, considering we are in Boolean or multivalued dynamics. The
function giving the evolution of a gene considering its effective predecessors is called
logical parameters.

3.1 Evolution function in Boolean and multivalued dynamics

3.1.1 Boolean dynamic states

In Boolean dynamics, genes have only two level of expression corresponding to a low
concentration denoted 0, or to an high concentration denoted 1. Hence, an interaction
a → b is effective if and only if the level of expression of a is high, i.e. equal to 1. The
knowledge of the expression levels of all the genes define a Boolean dynamic state.

Definition 3 (Boolean dynamic states)
Let G = (V, E, S) be a GRN and let i ∈ V be a gene. We denote by Xb(G) the set of

boolean dynamic states of G1: Xb(G) = {0, 1}|V |.
For x = (x1, ..., x|V |) ∈ Xb(G), xi ∈ {0, 1} is the expression level of gene i.

Example 2 (Boolean dynamic states of the interaction graph from fig. 1)
Interaction graph from fig. 1 is composed of four genes. Thus, there are 16 possible
dynamic states which are the elements of {0, 1}4. For example, the dynamic state
(xi = 1, xj1 = 1, xj2 = 0, xk = 0).

3.1.2 Multivalued dynamic states

Thresholds. In multivalued dynamics, genes have several possible level of expression,
and thus the notion of ”sufficient expression level” is more complex because the dy-
namics depends on a set of parameters called threshold parameters. When a gene i

acts on several targets, on j and k for example, it is often known that the level of i

mandatory for an action on j to be effective is higher than the level necessary for the
action of i on k.

Definition 4 (Thresholds parameters)
Given a GRN (G = V, E, S), thresholds parameters are represented by a function
T : E ⇒ N∗ which associated to each interaction of a GRN its threshold. T is such
that such that

∀(i, j) ∈ E,T (i, j) 6= 1 ⇔ ∃k ∈ E : T (i, k) = T (i, j) − 1

In other word, if an interaction outgoing from a variable i is labelled by a threshold
α greater than 2, then there exist interactions outgoing from i labelled by 1, . . . , α−1.
This well represents the qualitative nature of thresholds in GRN, and an interaction
(j, i) will be effective if and only if the expression level of j is above the threshold of
(j, i). Obviously, several threshold parameters can be associated to a single interaction
graph.

1
Let us recall that |V | denotes the number of elements in the set V .
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Dynamic states. The multivalued dynamics states of a GRN depends on both the
interaction graph and the threshold parameters. Indeed, a gene can take as many
values as the greatest outgoing threshold.

Definition 5 (Multivalued dynamic states)
Let G = (V, E, S) be a GRN, and let T be a set of threshold parameters associated to
G. We denote for all i ∈ V bi = max{T (i, j)|j ∈ V +(i)}). The set of possible level of
expression for a gene i is Xi(G, T ) = {0, 1, ..., bi}.

We denote by Xm(G, T ) the set of multivalued dynamic states of G, associated to
T : Xm(G, T ) =

Q

i∈V
Xi(G, T ).

In the following, many definitions refer either to multivalued or to Boolean dy-
namics states. If the definition is identical in both cases, we refer to dynamic states
(either Boolean or multivalued) using the notation X (instead of Xb(G) or Xm(G, T )).

3.1.3 Evolution function

Given a GRN G, and X a set of dynamic states (either Boolean or multivalued), then,
each dynamics associated to a GRN can can be modelled by an evolution function
f = (f1, ..., fn) : X → X (with n the number of genes). Each application fi gives the
evolution of gene i considering the dynamic state x = (x1, ..., xn) of the GRN G:

• if xi < fi(x) then the level of i is increasing,

• if xi > fi(x) then the level of i is decreasing,

• if xi = fi(x) then the level of i is stable.

The dynamics defined by a evolution function f is commonly represented by the tran-

sition graph of f , that is a graph where nodes are elements of X and there is an edge
from x to x′ iff f(x) = x′.

3.2 Effective interactions and logical parameters

Considering a dynamic state, the evolution of a given gene expression level does not
depend on all the genes of the GRN, but only on the predecessors with a sufficient

expression level, and called effective predecessors.

3.2.1 Boolean effective predecessors

In Boolean dynamics, only genes with an expression level equal to 1 may influence
other genes.

Definition 6 (Boolean effective activators and inhibitors)
Let G = (V, E,S) be a interaction graph, and let i ∈ V be a gene. Given a dynamic
state x ∈ Xb(G), We denote by A∗

b(i, x) (resp. I∗
b (i, x)) the set of Boolean effective

activators (resp. Boolean effective inhibitors) of i:

A
∗
b(i, x) = {j|j ∈ V

−(i), S(j, i) = +, xj = 1}

I
∗
b (i, x) = {j|j ∈ V

−(i), S(j, i) = +, xj = 1}

We denote by w∗
b (i, x) the set of effective predecessors of i:

w
∗
b (i, x) = A

∗
b(i, x) ∪ I

∗
b (i, x)

For every gene j in w∗
b (i, x), the interaction (j, i) ∈ E is said to be effective.
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3.2.2 Multivalued effective predecessors

The evolution function in multivalued dynamics depends on whether or not the con-
centrations of genes are under or above their thresholds.

Definition 7 (Multivalued effective activators and inhibitors)
Let G = (V, E, S) be a interaction graph, and let T be a set of associated threshold
parameters. Let i ∈ V be a gene. Given a dynamic state x, We denote by A∗

m(i, x)
(resp. I∗

m(i, x)) the set of multivalued effective activators (resp. multivalued effective
inhibitors) of i:

A
∗
m(i, x) = {j|j ∈ V

−(i), S(j, i) = +, xj ≥ T (j, i)}

I
∗
m(i, x) = {j|j ∈ V

−(i), S(j, i) = −, xj ≥ T (j, i)}

We denote by w∗
m(i, x) the set of multivalued effective predecessors of i:

w
∗
m(i, x) = A

∗
m(i, x) ∪ I

∗
m(i, x)

For every gene j in w∗
m(i, x), the interaction (j, i) ∈ E is said to be effective.

In the following, many definitions refer either to multivalued or to Boolean ef-
fective predecessors. If the definition is identical in both cases, we refer to effective
predecessors (either Boolean or multivalued) using the notation w∗ (instead of w∗

b or
w∗

m).

3.2.3 Logical parameters

Given a dynamic state x, the evolution function of a gene i does not depend on x but
on w∗(i, x) (either w∗

b (i, x) or w∗
m(i, x)). This allow us to define the logical parameters

which totally determine the behaviours of the evolution function, and then give a
possible dynamics for the GRN.

Definition 8 (Logical parameters)
Let G = (V, E, S) be a interaction graph. Given f : X → X an evolution function for
G., we may define for each gene i ∈ V , a set of logical parameters Ki such that

• in Boolean dynamics: fi(x) = Ki(w
∗
b (i, x)) and Ki : 2V

−
i → {0, 1};

• in multivalued dynamics: fi(x) = Ki(w
∗
m(i, x)) and Ki : 2V

−
i → {0, . . . , bi}.

Obviously, several different multivalued dynamic states could have the same sets
of effective activators or inhibitors. In the following, we usually refer to state by only
giving the set of effective activators or inhibitors. Thus, for example, considering a
particular gene i, a set {j1, j2} of effective predecessors of i will refer to any dynamic
state x, such that xj1 ≥ T (j1, i) and xj2 ≥ T (j2, i).

Example 3 (Logical parameters for fig. 1)
The gene i has three predecessors which admits two levels of expression. Thus, there is
8 logical parameters Ki to consider: Ki(∅), Ki({j1}), Ki({j2}), Ki({k}), Ki({j1, j2}),
Ki({j1, k}), Ki({j2, k}) and Ki({j1, j2, k}) .

To each instantiation of logical parameters corresponds an evolution function defin-
ing a possible dynamics for the GRN. We are interested in researching constraints on
these logical parameters in order to reduce their possible values, and then to reduce
the number of dynamics we have to consider.

Finally, determining the dynamics of a GRN consists in the attribution of values
to the different logical parameters. The number of these parameters is huge: given a

gene i, there is 2|V −(i)| logical parameters Ki, and each parameter can take at least
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two values (in Boolean dynamics). Thus, we have to consider
Q

i∈V
22|V

−(i)|

possible
logical parameters. For example, just for the interaction graph from fig. 1 we have to

consider 223

= 256 possible attributions for the logical parameters of i.
Nevertheless, the attribution of values to logical parameters follows certain rules,

linked to the interaction graph, and to the type of interaction (activation or inhibition).
These rules are detailed in section 3.3.

3.3 Rules based on interaction graph

The rules presented here are based on the interaction graph. Logical parameters which
respect these three rules are said to be valid.

3.3.1 Activation/Inhibition rule

This rule is based on the definition of activation or inhibition. If a gene j activates a
gene i, we cannot be certain that the increase of j expression level lead to an increase
for i, but, it is certain that it cannot lead to a decrease of i expression level.

Definition 9 (Activation/inihibition rule)
Given a GRN G = (V, E, S), and i, j in V two genes such (j, i) ∈ E (j is a predecessor
of i), then:

• S(j, i) = + ⇒ ∀ω ⊆ V −(i), Ki(ω) ≤ Ki(ω ∪ {j})

• S(j, i) = − ⇒ ∀ω ⊆ V −(i), Ki(ω) ≥ Ki(ω ∪ {j})

3.3.2 Observation rule

This rule expresses how we identify that a predecessor is an activator or an ihibitor.
If j is an activator of i, then it exists at least one dynamics state where the high
expression level of j leads to a an increase of the expression level of i. In other word,
at least one of the previous inequality must be strict.

Definition 10 (Observation rule)
Given a GRN G = (V, E, S), and i, j in V two genes such (j, i) ∈ E (j is a predecessor
of i), then:

• S(j, i) = + ⇒ ∃ω ⊆ V −(i), Ki(ω) < Ki(ω ∪ {j})

• S(j, i) = − ⇒ ∃ω ⊆ V −(i), Ki(ω) > Ki(ω ∪ {j})

3.3.3 Maximum rule

This rule expressed that in a dynamic state where all the activators of a gene are ef-
fective and simultaneously none of the inhibitor is effective, then the associated logical
parameter is maximum (that is equal to 1 in Boolean dynamics, or bi in multivalued
dynamics). Conversely, if none of the activator is effective, and all inhibitors are, then
the logical parameter is minimum, that is equal to 0.

Definition 11 (Maximum rule for Boolean dynamics)
Let G = (V, E, S) be a GRN, and let i in V be a gene. Let x be a Boolean dynamic
state. We have:

Ki(A(i, x)) = 1 Ki(I(i, x)) = 0

Definition 12 (Maximum rule for multivalued dynamics)
Let G = (V, E, S) be a GRN and T be a set of threshold parameters. Let i in V be a
gene. Let x be a multivalued dynamic state. We have:

Ki(A(i, x)) = bi = max{T (i, j)|(i, j) ∈ E} Ki(I(i, x)) = 0
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Ki({k}) = 1

Ki({j1, k}) Ki(∅) Ki({j2, k})

Ki({j1}) Ki({j1, j2, k}) Ki({j2})

Ki({j1, j2}) = 0

Fig. 2: Relation among logical parameters of the interaction graph from fig. 1.

3.3.4 Example

Example 4 (Valid parameters for fig. 1)
The Activation/Inhibition rule imposes the following inequalities to be respected.

• k is an activator of i:

Ki(∅) ≤ Ki({k}) Ki({j1}) ≤ Ki({j1, k})

Ki({j2}) ≤ Ki({j2, k}) Ki({j1, j2}) ≤ Ki({j1, j2, k})

• j1 is an inhibitor of i:

Ki(∅) ≥ Ki({j1}) Ki({j2}) ≥ Ki({j1, j2})

Ki({k}) ≥ Ki({j1, k}) Ki({j2, k}) ≥ Ki({j1, j2, k})

• j2 is an inhibitor of i:

Ki(∅) ≥ Ki({j2}) Ki({j1}) ≥ Ki({j1, j2})

Ki({k}) ≥ Ki({j2, k}) Ki({j1, k}) ≥ Ki({j1, j2, k})

The observation rule imposes that in each previous point, at least one of the
inequalities is strict.

Finally, the maximum rule imposes that Ki({k}) = 1 and Ki({j1, j2}) = 0.
This can be resumed in the graph from figure 4, where an arrow from i to j mean

i ≥ j, and this inequality is strict for at least one arrow of each type (plain, dashed or
doted arrow).

4 Constraints based on spatial information

4.1 Conflicts and dilemma

Despite the above rules, possible dynamics of a real genetic regulatory network are
often too numerous. Indeed, for one interaction graph, several logical parameters are
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valid, that is several dynamics exists. In fact we can identify the situations which lead
to the existence of different logical parameters, that is dynamics states where the three
above rules do not allow us to determine an unique values for logical parameters:

• Conflicts occur when a gene is simultaneously activated and inhibited,

• Dilemma occur when all the activators (resp. inhibitors) of a gene are not
effective.

Definition 13 (Conflicts and dilemma)
Let G = (V, E, S) be an interaction graph, i ∈ V be a gene and x ∈ X be a dynamic
state.

• x is a situation of conflict for gene i if, and only if, A∗(i, x) 6= ∅ and I∗(i, x) 6= ∅

• x is a situation of dilemma for gene i if, and only if, (A∗(i, x) 6= ∅ and A∗(i, x) 6=
A(i)) or (I∗(i, x) 6= ∅ and I∗(i, x) 6= I(i))

In the following, we will focus on the determination of logical parameters. Thus,
conflict and dilemma will refer to parameters, that is Ki(w

∗(i, x)) is a conflict (resp.
a dilemma) if and only if x is a situation of conflict (resp. dilemma) for gene i. In
other words, if w∗(i, x) = ω:

• Ki(ω) is a conflict iff ω ∩ A(i) 6= ∅ and ω ∩ I(i) 6= ∅,

• Ki(ω) is a dilemma iff A(i) 6⊂ ω 6⊂ I(i) or I(i) 6⊂ ω 6⊂ A(i).

In this model, Ki(∅) is neither a conflict nor a dilemma, but corresponds to the
basal situation, where a gene i is not activated or inhibited.

Example 5 (Conflicts and dilemma in fig. 1)
Let us consider the 8 possible dynamic states, and the associated logical parameters
for gene i for the interaction graph from fig. 1:

• Ki({j1}) and Ki({j2}) are dilemma;

• Ki({j1, j2, k}) is a conflict;

• Ki({j1, k}), Ki({j2, k}) are both conflict and dilemma.

Note that Ki({k}) and Ki({j1, j2}) are neither conflict nor dilemma: the former cor-
respond to a situation where i is fully activated and is not inhibited, the latter corre-
sponds to the reverse situation.

In the next section we will introduce some spatial information within GRN. This
information which enable us to solve some situations of conflicts and dilemma, and
then restrict the dynamics of genetic regulatory networks.

4.2 Spatial information

Spatial information is used to help us to solve dilemma and conflicts during the search
for logical parameters that define the dynamics of regulatory networks. This notion is
captured through two notions:

The spatial information we add in GRN is based on two concepts:

• The notion of cluster expresses the notion of co-regulation, that is a set of
spatially closed genes that are expressed at the same time due to the expression
of a single regulating gene (i.e. the presence of a single transcription factor).

• The notion of distances between a gene (or a protein) and the genes it regu-
late is modelled through privileged interactions. Privileged interactions are an
ubiquitous concept in biology, more general that the notion of distance. For
instance, specific interactions (e.g. between a transcription factor and DNA) in
contrast to non-specific interactions, local concentration phenomena are exam-
ples of privileged interactions.
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4.2.1 Privileged interactions and neighbourhood relation

In the case of spatial information, privileged interactions are mainly based on the
notion of gene neighbourhood, which measures the proximity of two given genes mod-
ulating the interaction force between the two genes. If all genes are close to each other,
or conversely are far away from each other, then the resulting dynamics is identical to
the classical approach of René Thomas. In contrast, the notion of distance as privi-
leged interactions will allow us to reduce, eventually to one, the number of dynamics
to consider.

Definition 14 (GRN with privileged interactions)
A GRN with privileged interactions is a tuple G = (V, E, S, P ) such that (V, E, S) is
a GRN, and P is a subset of E denoting the set of privileged interactions.

By abuse of notations, given a gene i ∈ V , we denote by P (i) the set of privileged
predecessors of i: P (i) = {j|(j, i) ∈ P}

Obviously, all definitions used for GRN are extended to GRN with privileged
interactions.

GRN are classically represented by a interaction graph. The privileged interactions
can be easily representing in the graph, using dashed arrow for the elements of P and
plain arrows for the elements of E − P (see section 4.3.1 for example).

4.2.2 Clusters

Clusters represent groups of genes which are simultaneously activated or inhibited by
a same gene. Formally, to each gene we associate a partition of its target genes.

Definition 15 (Clusters)
Let G = (V, E, S) be a GRN. A cluster over G is a function C : V → 2V such that for
all i in V , C(i) = {C1

i , ..., C
pi

i } is a partition over V +(i), that is:

• ∪pi

k=1C
k
i = V +(i)

• for all k, k′, k 6= k′ ⇒ Ck
i ∩ Ck′

i = ∅

4.3 Constraints based on privileged interactions

4.3.1 Influence of privileged interactions

The main idea of the privileged interactions is that their ”force” of interaction is higher
than the force of non privileged interactions. Figure 3 presents the idea of how using
the privileged interactions, representing by dashed lines, to solve conflict in case of
Boolean dynamics.

Direct influence. The main idea is that if two interactions occurs simultaneously,
then the privileged one is preferred. The following constraint is an extension of the
maximum rule. The maximum rule imposes that if all the activators of a gene are
effective, and none of the inhibitors is, then the expression level of that gene is maxi-
mum. The constraint indicates that if none of privileged activators are effective, and
some privileged inhibitors of the considered gene are effective, then the expression level
cannot be maximum.

Note that in Boolean dynamics, the expression level of a gene is either 0 or maxi-
mum. Then saying that a gene expression level is not maximum is equivalent to giving
it a value 0.

Definition 16 (Direct influence of privileged interactions in Boolean dynamics)
Let G = (V, E, S, P ) be a GRN with privileged interactions. Let i ∈ V be a gene and
x ∈ Xb(G) a Boolean dynamic state. Then
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j i k
- +

Conflict for Ki({j, k})

j i k
- +

Inhibition is stronger than activation

Ki({j, k}) = 0

j i k
- +

Activation is stronger than inhibition

Ki({j, k}) = 1

j i k
- +

The conflict cannot be solved

Fig. 3: Idea of how solving conflicts with privileged interactions

• If A∗
b(i, x) ∩ P (i) 6= ∅ and I∗

b (i, x) ∩ P (i) = ∅ then, Ki(w
∗
b (i, x)) = 1.

• If I∗
b (i, x) ∩ P (i) 6= ∅ and A∗

b(i, x) ∩ P (i) = ∅ then, Ki(w
∗
b (i, x)) = 0.

Definition 17 (Direct influence of privileged interactions in multivalued dynamics)
Let G = (V, E, S) be a GRN and T an associated threshold funtion. Let N be a
neighbourhood relation associated to G. Let i ∈ V be a gene and x ∈ Xm(G) a
multivalued dynamic state. Then

• If A∗
m(i, x) ∩ P (i) 6= ∅ and I∗

m(i, x) ∩ P (i) = ∅ then, Ki(w
∗
m(i, x)) > 0.

• If I∗
m(i, x) ∩ P (i) 6= ∅ and A∗

m(i, x) ∩ P (i) = ∅ then, Ki(w
∗
m(i, x)) < bi =

max{T (i, j)|(i, j) ∈ E}.

Relative influence. The level of expression of non privileged predecessors is not im-
portant compared to the presence of absence of privileged ones. In other words, the
value of a logical parameter for a set of effective genes, whose at least one is a priv-
ileged predecessor, remains the same whatever non privileged predecessors becoming
effective.

Definition 18 (Relative influence of privileged interactions in Boolean dynamics)
Let G = (V, E, S, P ) be a GRN with privileged interactions. Let i ∈ V be a gene and
ω ⊆ V −(i) a set a predecessor of i such that ω ∩ P (i) 6= ∅. Let j ∈ V −(i) such that
j 6∈ P (i) (j is a a non privileged predecessor of i). Then

• If Ki(ω) = 0 then Ki(ω ∪ {j}) = 0.

• If Ki(ω) = 1 then Ki(ω ∪ {j}) = 1.

Definition 19 (Relative influence of privileged interactions in multivalued dynamics)
Let G = (V, E,S, P ) be a GRN with privileged interactions, and T an associated
threshold function. Let i ∈ V be a gene and ω ⊆ V −(i) a set a predecessor of i such
that ω∩P (i) 6= ∅. Let j ∈ V −(i) such that j 6∈ P (i) (j is a non privileged predecessor
of i). Then
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j1

j2

i k

-

+

-

j1 j2 k Evolution
0 0 0 Ki(∅)
0 0 1 Ki({k}) = 1
0 1 0 Ki({j2}) = Dilemma
0 1 1 Ki({j2, k}) = Dilemma + conflict
1 0 0 Ki({j1}) = 0 (j1 effective, no more dilemma)
1 0 1 Ki({j1, k}) = 0 (j1 effective, no more dilemma nor conflict)
1 1 0 Ki({j1, j2}) = 0
1 1 1 Ki({j1, j2, k}) = 0 (j1 effective, no more conflict)

Fig. 4: Logical parameters when one inhibitor is the only privileged predecessor.

• If Ki(ω) < bi then Ki(ω ∪ {j}) < bi.

• If Ki(ω) > 0 then Ki(ω ∪ {j}) > 0.

4.3.2 Influence of privileged interactions in the interaction graph from fig. 1

We study here the different possible privileged interactions for the interaction graph
from fig. 1.

• Figure 4 present the case where one inhibitor is the only privileged predeces-
sor. In that case, as soon as the concentration of the privileged gene is under
the threshold, conflict and dilemma appears between other genes. When the
concentration is above the threshold, conflict and dilemma are solved.

• Figure 5 present the case where all inhibitors are the privileged predecessors.
There is no conflict and the dynamics is unique.

• Figure 6 present the case where all activators are the privileged predecessors.
There is no conflict, but some dilemma remains.

4.3.3 Toward an unique Boolean dynamics

Necessary condition. A necessary condition for a GRN to have an unique dynamics
is ”the set of privileged predecessors is either included in the set of activators or
inhibitors”.

Theorem 1 (Necessary condition to a unique dynamic)
A GRN with privileged interactions (V, E,S, P ) has a unique dynamics only if the
following condition is true: for all i ∈ V , we have

P (i) ⊆ A(i) or P (i) ⊆ I(i)

Proof 1 Without this condition, there exist one activator and one inhibitor which are

privileged predecessors of a given gene, and when the concentration of theses two gene

is above their respective threshold, a conflict occurs.
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j1

j2

i k

-

+

-

j1 j2 k Evolution
0 0 0 Ki(∅)
0 0 1 Ki({k}) = 1
0 1 0 Ki({j2}) = 0 (j2 effective, no more dilemma)
0 1 1 Ki({j2, k}) = 0 (j2 effective, no more dilemma nor conflict)
1 0 0 Ki({j1}) = 0 (j1 effective, no more dilemma)
1 0 1 Ki({j1, k}) = 0 (j1 effective, no more dilemma nor conflict)
1 1 0 Ki({j1, j2}) = 0
1 1 1 Ki({j1, j2, k}) = 0 (j1 and j2 effective, no more conflict)

Fig. 5: Logical parameters when all inhibitors are privileged predecessors.

j1

j2

i k

-
+

-

j1 j2 k Evolution
0 0 0 Ki(∅)
0 0 1 Ki({k}) = 1
0 1 0 Ki({j2}) = Dilemma
0 1 1 Ki({j2, k}) = 1 (k effective, no more dilemma nor conflict)
1 0 0 Ki({j1}) = Dilemma
1 0 1 Ki({j1, k}) = 1 (k effective, no more dilemma nor conflict)
1 1 0 Ki({j1, j2}) = 0
1 1 1 Ki({j1, j2, k}) = 1 (k effective, no more conflict)

Fig. 6: Logical parameters when all activators are privileged predecessors.
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This condition is not a sufficient one, because when the concentration of privileged
predecessors is under their threshold, conflict and dilemma may occur between other
genes.

Necessary and sufficient condition for no conflict. A necessary and sufficient condi-
tion to have no conflict is given by the equality in previous condition. In other words,
there is no conflict if the set of privileged predecessors is either equal to activators or
inhibitors.

Theorem 2 (Necessary and sufficient condition to a no conflict situation)
A GRN with privileged interactions (V, E,S, P ) has no situation of conflict if the
following condition is true: for all i ∈ V , we have

P (i) = A(i) or P (i) = I(i)

Proof 2 In this case, it is clear that we cannot have any conflict since the privileged

predecessors have the same type of interaction. Thus, the condition is sufficient.

If the condition is not respected, two cases have to be considered:

• P (i) ( A(i) or P (i) ( I(i)

• P (i) ∩ A(i) 6= ∅ and P (i) ∩ I(i) 6= ∅

In both cases, it is easy to find conflict. Thus, the condition is necessary

Nevertheless, if the concentration of all privileged predecessors is under thresholds,
then a situation of dilemma may occur.

Necessary and sufficient condition for no dilemma. Dilemma occur when two genes
having the same action (either activation or inhibition) are not effective simultaneously.
Thus, a necessary and sufficient condition to have no dilemma is that either there is
only one gene for a given action, or each predecessor having this action is a privileged
predecessor of the target.

Theorem 3 (Necessary and sufficient condition to a no dilemma situation)
A GRN with privileged interactions (V, E, S, P ) has no situation of dilemma iff the
two following conditions are true: for all i ∈ V , we have

• A(i) ⊆ P (i) or |A(i)| = 1

• I(i) ⊆ P (i) or |I(i)| = 1

Proof 3 The proof is let to the reader.

Necessary and sufficient condition for a unique Boolean dynamics. The dynamics
is unique iff there is no dilemma nor conflict, which directly lead to the following
necessary and sufficient condition.

Theorem 4 (Necessary and sufficient condition to a no dilemma situation)
A GRN with privileged interactions (V, E, S, P ) has a unique dynamics iff for all i ∈ V

one the following condition is true:

• A(i) = P (i) and |I(i)| = 1

• |A(i)| = 1 and I(i) = P (i)

Proof 4 The theorem is a direct consequence of theorems 2 and 3.
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Fig. 7: Interaction graph for the mucus production system in P. aeruginosa

4.4 Constraints based on clusters

Clusters information is used in multivalued dynamics. It influences the threshold
function to consider. In other words, given a cluster we only consider the threshold
function verifing that genes of a same cluster are simultaneously activated or inhibited,
that is the threshold between the source and the target of the considered genes are
the same.

Definition 20 (Cluster and threshold)
Let G = (V, E, S) be a GRN, and C an associated cluster. Then the compatible
threshold functions are such that: for all i in V , for all k, k′ in {j|j ∈ V, (i, j) ∈ E}

∃p ∈ N, k ∈ C
p

i , k
′ ∈ C

p

i ⇒ T (i, k) = T (i, k′)

5 Mucus production in Pseudomonas aeruginosa

Pseudomonas aeruginosa are bacteria that secrete mucus (alginate) in lungs affected
by cystic fibrosis, but not in common environment. As this mucus increases respiratory
defficiency, this phenomenon is a major cause of mortality. Details of the regulatory
network associated with the mucus production by Pseudomas aeruginosa are described
by Govan and Deretic [4] but a simplified genetic regulatory network has been proposed
by Guespin and Kaufman [5], see Fig.7.

It has been observed that mucoid P. aeruginosa can continue to produce mucus
isolated from infected lungs. It is commonly thought that the mucoid state of P.

aeruginosa is due to a mutation which cancels the inhibition of gene x. An alternative
hypothesis has been made: this mucoid state can occur by reason of an epigenetic
modification, i.e. without mutation [5]. The models compatible with this hypothesis
are constructed in [1]. We show here that distances are useful for reducing such a set
of models.

5.1 Boolean dynamics

The logical parameters to consider are the following ones:

• Ky(∅) and Ky({x}) for the gne y,

• Kx(∅), Kx({x}), Kx({y}) and Kx({x, y})for gene x.

These parameters can take values 0 and 1, and thus, without any further consider-
ation this leads to 22×24 = 64 possible dynamics. Obviously, this number is decreased
considering the rules previously presented:

• For y: Ky(∅) = 0 and Ky({x}) = 1 due to the observation rule.

• For x:

– the maximum rule leads to Kx({x}) = 1 and Kx({y}) = 0,

– then the observation rule leads to two possible dynamics: either (Kx(∅) = 1
and Kx({x, y}) = 1) or (Kx(∅) = 0 and Kx({x, y}) = 0).



5 Mucus production in Pseudomonas aeruginosa 16

x y Kx Ky

0 0 0 0
0 1 0 0
1 0 1 1
1 1 0 1

(0, 0)

(1, 0)

(0, 1)

(1, 1)

Inhibition stronger than activation

x y Kx Ky

0 0 1 0
0 1 0 0
1 0 1 1
1 1 1 1

(0, 0)

(1, 0)

(0, 1)

(1, 1)

Activation stronger than inhibition

Fig. 8: Valid dynamics for the interaction graph of mucus production in P.

aeruginosa

The two possible dynamics are due to the conflict between x and y, and then
the knowledge of privileged interactions among the activation of x by itself or the
inhibition of x by y would lead to the determination of a unique dynamic.

• If both the interactions are privileged ones (or conversely are not privileged
ones) then the two dynamics remains valid.

• If the inhibition is privileged and not the activation, then Kx(∅) = 0 and
Kx({x, y}) = 0.

• If the activation is privileged and not the inhibition, then Kx(∅) = 1 and
Kx({x, y}) = 1.

The two dynamics are represented on figure 8.

5.2 Multivalued dynamics

Logical parameters. In that case, gene x may have three level of expression, and thus
the logical parameters to consider are the following ones:

• Ky(∅) and Ky({x}) which can take value in {0, 1}

• Kx(∅), Kx({x}), Kx({y}) and Kx({x, y}) which can take value in {0, 1, 2}

Without any considerations, these parameters lead to 22 × 34 = 324 different
models for the dynamics.

The value of some logical parameters can be inferred with the rules previously
described:

• For y: Ky(∅) = 0 and Ky({x}) = 1 due to the observation rule.

• For x:

– the maximum rule lead to Kx({x}) = 2 and Kx({y}) = 0

– the observation rule implies that we cannot have (Kx({x, y}) = 0 and
Kx(∅) = 2) or (Kx({x, y}) = 2 and Kx(∅) = 0).

We finally have 7 different models for logical parameters.
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Thresholds. In multivalued dynamics, we also have to consider the different possible
threshold functions. The case of gene y is easily solved, because y has only one
successor, and thus any valid threshold function T is such that T (y, x) = 1. For gene
x, three threshold function are valid:

• T (x, y) = 1 and T (x, x) = 1, which is similar to Boolean dynamics;

• T (x, y) = 1 and T (x,x) = 2, the activation of y occurs before the activation of
x;

• T (x, y) = 2 and T (x, x) = 1, the activation of y occurs after the activation of x.

Figures 9 and 10 give the seven possible dynamics considering the two last solu-
tions.

With privileged interactions. Many dynamics exist due to the conflict between the
activation of x by itself, and its inhibition by y. Privileged interactions between these
two interactions may reduce the number of dynamics to consider. Obviously, if both
of interactions are privileged, conversely if none of them are, then the 7 dynamics
remains valid for each threshold function.

• If the activation of x by itself is the only privileged interaction, then Kx({x, y}) >

0.

• If the inhibition of x by y is the only privileged interaction, then Kx({x, y}) < 2.

In both cases, the knowledge of privileged interactions allows us to refute 4 models
over the 14.
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x y

+,1

+,2

-,1

x y Kx Ky

0 0 Kx(∅) 0
0 1 0 0
1 0 Kx(∅) 1
1 1 0 1
2 0 2 1
2 1 Kx({x, y}) 1

Kx(∅) = 1, Kx({x, y} = 0)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 1, Kx({x, y} = 1)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 1, Kx({x, y} = 2)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 0, Kx({x, y} = 0)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 0, Kx({x, y} = 1)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 2, Kx({x, y} = 1)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 2, Kx({x, y} = 2)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Fig. 9: Valid dynamics for the interaction graph of mucus production in P.

aeruginosa when the activation of y occurs before the activation of x
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x y
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x y Kx Ky

0 0 Kx(∅) 0
0 1 0 0
1 0 2 0
1 1 Kx({x, y}) 0
2 0 2 1
2 1 Kx({x, y}) 1

Kx(∅) = 1, Kx({x, y} = 0)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 1, Kx({x, y} = 1)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 1, Kx({x, y} = 2)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 0, Kx({x, y} = 0)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 0, Kx({x, y} = 1)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 2, Kx({x, y} = 1)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Kx(∅) = 2, Kx({x, y} = 2)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

Fig. 10: Valid dynamics for the interaction graph of mucus production in P.

aeruginosa when the activation of y occurs after the activation of x


