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Laboratoire de Méthodes Informatiques

Games networks and elementary modules

M. Manceny, F. Delaplace

e-mail : {mmanceny, delapla}@lami.univ-evry.fr

Rapport de Recherche no 120-2005

Novembre 2005
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Abstract. In this paper we propose an original modular extension of game theory named
games network. The objective of games networks is to provide a theoretical framework which
suits to modular dynamics resulting from different local interactions between various agents
and which enables us to describe complex system in a modular way. Games networks describes
situations where an agent can be involved in several different games, with several different
other agents at the same time.

However, several games networks can represent the same dynamics. We focus on the de-
termination of a global equilibria, resulting from the composition of local Nash equilibria,
which allows us to compute a games network normal form. This normal form emphasizes
the elementary modules which compose the games network.

Keywords: complex systems, modularity, game theory, networks.

1 Introduction

Analysis of complex systems is often based on the studies of relationships between com-
ponents instead of elements themselves. It is the case in post-genomic studies ([17, 21]).
This puts the emphasize on the way to analyse interactions. From modeling standpoints,
networks provide a suitable framework to describe interactions (edges) of components
(vertices). With networks, the description remains static and it is mainly focused on the
structural analysis of the properties of the system ([13]).

In order to improve the framework by including dynamical aspects for the analysis
of interactions, we propose to mix two formalisms: network formalism and game theory.
Game theory has been pioneered by von Neumann and Morgenstern to define a theoretical
framework to model complex interactions between agents or players ([15]). Game theory
provides a modeling framework to characterize complex interplays in a large variety of fields
such as Biology ([10, 16]), Economy ([7, 11]), Computer Science ([19, 1]). For instance in
social and economical fields, it aims at analyzing situations where agents take decisions
with the consciousness that outcomes of their own choices depends on the others. Decisions
aim at maximizing payoffs and choices are assumed to be the result of a rational behavior.
The rationality is however a metaphor suited for human interactions. In biology, adaptation
and Darwinian selection are preferred to motivate the strategies of the agents.

Schematically, games networks can be viewed as a “network of games and players”
where players are connected to the games they participate to. The representation corre-
sponds to a bipartite graph where two categories of nodes are available: nodes representing
players and nodes representing games. By using games networks, we describe the interac-
tions as a set of modular activities where each games represents a module of interactions.
Module description differs from usual representation such circuit devices, because compo-
nents may belong to different modules. Components are reused for different modules.

In post-genomic, recent analysis on gene expression ([20]) appear to confirm this fact
if we assume that each module corresponds to a coordinated set of responses to a stress.
So, module finding is shifted from components to interactions.



Finding modules remains a challenging problem. The challenge relies on the relevance
of the functional analysis deduced from the modular design proposed by the analysis.
Modular analysis is important for biological applications such as drug design because its
definition relies on an association between a support and a function. Hence, modules help
identify targets for drugs. Whatever the description of a module might took, they share
common general properties:

– Generative: each module is constitutive of a system of which it defines a building block.
From the assembly of the modules, the system is formed and acquires its properties.

– Functional : subject to its unicity, the deterioration of a module leads to the loss of the
properties assigned to the module.

– Elementary : this property refers to the atomicity of a module, that is, the impossibility
to extract a sub module from a module.

Generative. Games networks theory provides a framework for (biological) dynamics
based module analysis by describing the complexity of the interplays by games which
are assimilated to modules. Essentially, modular dynamics relies on locality assumptions
(represented by games). From the local properties of games, such as local equilibria, we
compute global equilibria of a system by “assembling” each compatible equilibria (section
5.3).

Functional. In games networks, relationships between games and functions are deter-
mined by the modeling. Functions are described by interplays described in a game. Local
(Nash) equilibria is then determined from each game. And the removal of a game induces
the loss of the equilibria associated to a game.

Elementary. However the description may not represent a basic module, according to
the previous properties, because the initial description may not be necessary elementary.
Indeed, the property relies on the assumption that a game cannot be splinted into two
sub-games. This can be hard to deal with during the design of the model. Hence, we
propose an algorithm to automatically decompose into elementary modules. The automatic
decomposition highlights new games structure of the former network and sometimes reveal
another view of the system.

The paper is organized as follows: Section 2 deals with related work. Section 3 presents
notations and general definitions used in this article. Section 4 briefly recalls the main re-
sult on strategic game theory. Section 5 presents the extension of strategic games to games
networks and define global equilibrium at the scale of the whole network. Section 6 deals
with structural modifications, that is the notion of equivalence between two games net-
works, and the operators that allow us to modify which agents participate to which games.
Section 7 is interested in finding a games network normal form, that is a network com-
posed of elementary modules (modules which can not be separated into smaller modules).
We define an separation algorithm based on the notion of dependence to automatically
computed normal form. We conclude in section 8.

2 Related work

Games with local interactions have been introduced to provide a framework to express
locality which reduce the complexity of the Nash equilibria computation.
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Indeed, research of the steady states of a game, and so computation of Nash equilib-
ria, is certainly one of the most studied field in game theory. Moreover, McKelvey and
McLennan ([12]) note that the computation of Nash equilibria in n-players games is much
harder, in many important ways, that the computation in 2-players games. In games with
local interactions, games are no longer considered in their globality, but through the local
interactions between the players.

La Mura, in [8], to treat multi-agent decision problems, introduces a new game rep-
resentation, more structured and more compact than classical representations in game
theory. Considering the strategic separabilities in its representation, La Mura presents
convergence methods to compute Nash equilibria.

Kearns, Littman and Singh in [5] introduce a compact graph-theoretic representation
for multi-party game theory. Their main result is an efficient algorithm for computing
approximate Nash equilibria in one-stage games represented by trees or sparse graphs.

Interested in Bayesian networks and in the locality of interactions, Koller and Milch in
[6] propose a representation language for general multi-player games named Multi-Agent
Influence Diagrams. They insist on the importance of dependence relationship among
variables to detect structures in games and decrease the computational cost of finding
Nash equilibria.

In this paper, we focus on interactions localized to a given process. Our games network
representation, compared to La Mura, is not another game-theoretic representation but an
extension of strategic representation. The closest representation is that of Kearns, Littman
and Singh. However, in quite a some way as Koller and Milch, we are interested in the
influence of the network organization, in terms of dependences between agents. We more
particularly focus on the research of elementary modules which compose a game.

3 Notations and definitions

In the paper, we use the following notations.

– [a : b] = {i ∈ Z|a ≤ i ≤ b} denotes a discrete interval bounded by a and b.

Let A be a set, we note:

– |A|, the cardinal of A

– if i ∈ A, i also denotes the singleton {i} if it is required by the context of the operation
– we consider the lifted version Alift = A + {⊥} where the element Bottom denoted by

⊥ is added to A

– Let X ⊆ An
lift

, n ≥ 1, we denote by dXe the set of profiles (or vectors) of X where each
profile does not contain ⊥, i.e.:

dXe = {c ∈ X|∀i ∈ [1 : n], ci 6= ⊥}

Let C = {Ci}i∈A be a set of sets, we note:

– C−j = ×i∈A−jCi, ∀j ∈ A

– CA = ×i∈ACi

– C∗
A =

⋃

X⊆A CX , the set of all k−uples of C with 0 ≤ k ≤ n
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– Given a profile (or vector) c ∈ CA

• c−i = (c1, · · · , ci−1, ci+1, · · · , cn) ∈ C−i; this excludes the ith component of a profile.
• (c−i, ci) = (c1, · · · , ci−1, ci, ci+1, · · · , cn) ∈ CA; the notation distinguishes the ith

component of the profile from the others. This notation is extended to sets of
indices, (c−X , cX), X ⊂ A.

Definition 1 (⊕ operator). We define the operator ⊕ : Alift × Alift 7→ Alift as follows:
∀α ∈ Alift, α ⊕⊥ = ⊥⊕ α = α,
∀α ∈ Alift, α ⊕ α = α,
∀(α, α′) ∈ A2

lift
, α 6= α′ ⇒ α ⊕ α′ = ⊥.

The extension of the ⊕ operator to profiles and set of profiles is defined as follows:
∀(c, c′) ∈ C2

A, c ⊕ c′ = (ci ⊕ c′i)i∈1:n,
∀(C, C ′) ∈ 2CA , C ⊕ C ′ = {c ⊕ c′|c ∈ C, c′ ∈ C ′}.

Example 1 (⊕ operator).
(a, b, c) ⊕ (a, d,⊥) = (a,⊥, c)

{(a, b, c), (a, d, c)} ⊕ {(a, d,⊥), (x, y, c)} = {(a,⊥, c), (a, d, c), (⊥,⊥, c)}

Definition 2 (nth operator). nth denotes the rank of an integer in an integer subset
according to the natural order

nth : N
+ × 2

N
+
7→ N

+,nth(i, A) =

{

|{j ∈ A | j ≤ i}| if i ∈ A

undefined otherwise

Example 2 (nth operator). nth(5, {1, 3, 5, 7}) = 3.

Definition 3 (Scatter). We define the Scatter operator as follows: c ↑B
A : C∗

A × 2
N

+
×

2
N

+
7→ (C∗

A)⊥,

∀i ∈ [1 : max(B)], (c ↑B
A)i =

{

cnth(j,A) if ∃j ∈ A ∩ B such that nth(j, B) = i

⊥ otherwise

Note: if B = [1 : n] is an interval, and A ⊆ B, the definition becomes:

∀i ∈ [1 : n], (c ↑B
A)i =

{

cnth(i,A) if i ∈ A

⊥ otherwise

Example 3 (Scatter). For instance, given the following profile (a, b, c, d), we have:

(a, b, c, d) ↑
[1:8]
{1,3,7}= (a,⊥, b,⊥,⊥,⊥, c,⊥)

(a, b, c, d) ↑
{1,2,3,7,8}
{1,3,7} = (a,⊥, b, c,⊥,⊥,⊥,⊥)

(a, b, c, d) ↑
{1,2,8}
{1,3,5,17}= (a,⊥,⊥,⊥,⊥,⊥,⊥,⊥)

4 Strategic Games

In this section we give definitions of game theory used in the article. The reader may refer
to the books [18, 14, 4] for a complete overview of game theory and its applications.
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4.1 Definition of a strategic game

Strategic game is a model of interplays where each agent chooses its plan of action (or
strategy) once and for all, and these choices are made simultaneously. Moreover, each
agent is rational and perfectly informed of the payoff function of other agents. Thus, they
aim at maximizing their payoffs while knowing the expectation of other agents.

Definition 4 (Normal or Strategic Representation). A strategic game Γ is a 3−uple
〈A, C, u〉 where:

– A is a set of players or agents.

– C = {Ci}i∈A is a set of strategy sets. Each Ci represents the set of the mi strategies
available for agent i, Ci = {c1

i , · · · , cmi

i }.

– u = (ui)i∈A is a vector of functions. Each ui : C 7→ R, i ∈ A represents the payoff
function of the agent i.

In order to conveniently combine sets of strategies, we define the strategy as follows:

Definition 5 (Set of Strategies). Let 〈A, C, u〉 be a strategic game, let Φ∗ be a set of
labels, The set of strategies C = {Ci}i∈A are defined as follows ∀i ∈ A, Ci = {(i, ϕ)|ϕ ∈
Φ∗}.

By this definition, the fact that agents share the same strategies do not interfere in
the union of sets of strategies.

4.2 Mixed (or randomized) strategies

Given a strategic game Γ = 〈A, C, u〉, a mixed-strategy1 for any player i is a probability
distribution over Ci. We let ∆(Ci) denote the set of all possible mixed strategies for player
i.

∆(Ci) = {(pj)j∈[1:mi]|∀j ∈ [1 : mi], 0 ≤ pj ≤ 1 ∧

mi
∑

j=1

pj = 1}

A mixed-strategy profile2 σ is any vector that specifies one mixed strategy σi ∈ ∆(Ci)
for each agent i ∈ A. We let ∆(C) denotes the set of all possible mixed-strategy profiles.

∆(C) = ×i∈A∆(Ci)

For any mixed-strategy profile σ ∈ ∆(C), let ui(σ) denotes the payoff for player i.

ui(σ) =
∑

c∈C

(
∏

j∈A

σj(cj))ui(c), ∀i ∈ A

1 If the distribution is such that only one probability is different to 0, then the mixed-strategy is called
pure strategy.

2 If the strategy of each player is pure, the profile is said to be pure.
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4.3 Nash equilibrium

Nash equilibrium is a central concept of game theory. This notion captures the steady
states of the play of a strategic game in which each agent holds the rational expectation
about the other players behavior. A mixed Nash equilibrium is defined as follows:

Definition 6 (Mixed Nash equilibrium of a strategic game). Let 〈A, C, u〉 be a
strategic game, and σ∗ ∈ ∆(C) a mixed-strategy profile. σ∗ is a mixed Nash equilibrium3

iff:
∀i ∈ A, ∀σi ∈ ∆(Ci), ui(σ

∗
−i, σi) ≤ ui(σ

∗
−i, σ

∗
i )

In other words, no agent can unilaterally deviate of a mixed Nash equilibrium without
decreasing its payoff.

Definition 7 (Set of mixed Nash equilibria). Let G = 〈A, C, u〉 be a game, we define
mne(G), the set of mixed Nash equilibria for G:

mne(G) = {σ∗ ∈ ∆(C)|ui(σ
∗
−i, σi) ≤ ui(σ

∗
−i, σ

∗
i ), ∀i ∈ A, ∀σi ∈ ∆(Ci)}

5 Games Network

Games networks correspond to an extension of game theory which defines modular interac-
tions localized to different subsets of agents. Each module corresponds to a specific game
defined by a payoff function. Parameters of the payoff function are strategies of agents
involved in the game. Agents are shared between different modules and played different
games in parallel. However, they have the same set of strategies for every games they
played. In a games network, several games are combined to form a more general structure
of network. In this section, we address the main definitions of a games network. The reader
may refer to [2] for a more complete overview.

5.1 Definition of a Games Network

The definition of a games network mainly consists of defining a set of agents connected to
a set of games.

Definition 8 (Games Network). A games network is a 3−uple 〈A, C,U〉 where

– A is a set of agents or players.
– C = {Ci}i∈A is a set of sets of strategies.
– U = {〈A, u〉} is a set of game nodes where each A ⊆ A is a set of agents and

u : A × CA 7→ R is a set of payoff functions such that u = {ui : CA 7→ R}i∈A.

A games network offers a synthetic representation to define the different interplays
between several players. The structure 〈A, u〉 totally determines a game played by a subset
of agents since it useless to include the strategies which are the same for any agent of the
network. A games network is represented by a bipartite graph 〈A,U , E〉, E ⊆ A×U where
an edge (i, 〈A, u〉) is a member of E if and only if i ∈ A (See fig. 1 for an illustration of a
“4-agents/3-games” games network).

3 If the profile is pure, we speak about pure Nash equilibrium.
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5.2 Restriction

A game node can be viewed as a sub game of a larger game played by the whole agents of
the network. To focus on an arbitrary sub game, we equip the theory with the restriction
operator which restricts a mixed-strategy profile to relevant values according to a subset
of agents, named support of the sub game. A profile of values defined by a restriction is
considered as a local profile of a subset of agents. Whatever the values associated to other
agents are, they will not be considered for a local profile.

Definition 9 (Mixed-strategy Profile Restriction). Let A = [1 : n] be a discrete
interval representing a set of agents, let C = {Ci}i∈A be a set of strategy sets. Given a
mixed-strategy profile σ ∈ ∆(C)4, we define its restriction to a subset A ⊆ A, denoted by
σ↓A: ∆(C) × 2

A 7→ ∆(C)lift, as follows5 :

(σ↓A)i =

{

σi if i ∈ A

⊥ otherwise

We extend the restriction operator by removing bottom elements (⊥) of the profile, but the
order of the other values is conserved in the resulting profile. We note the composition of
the removals and restriction operation as follows: σ ⇓X

The restriction is obviously extended to a set of mixed-strategy profiles by applying
the operation to every elements.

Example 4. Let A = [1 : 4] and σ = (σ1, σ2, σ3, σ4). Let A = {1, 3}, we have σ ↓A=
(σ1,⊥, σ3,⊥) and σ ⇓A= (σ1, σ3).

The restriction applied to mixed-strategy profiles will be used in section 5.3 to put the
focus on a sub part of a profile which corresponds to a game node.

5.3 Mixed Games network equilibrium

We define global equilibria at the scale of the games network. Such an equilibrium is named
the mixed games network equilibria (MGne). A games network equilibrium corresponds
to a compatible association of local equilibria. We assume that agents follow the single
played strategy rule, that is an agent plays the same strategy for every connected games.
The definition of MGne can of course be applied to the whole network, but the restriction
to a subset of game nodes allow us to define regions where equilibria are compatible.

Definition 10 (Mixed Games Network Equilibrium). Let Γ = 〈A, C,U〉 be a games
network, let σ∗ = (σ1, · · · , σn) ∈ ∆(C) be a mixed-strategy profile of every agents6. σ∗ is
a mixed games network equilibrium of a subset U ⊆ U (noted σ∗ ∈ MGneΓ (U)) iff:

∀〈A, u〉 ∈ U, σ∗ ⇓A is a mixed Nash equilibrium of the game 〈A, (Ci)i∈A, u〉

Theorem 1 allows us to determine all the global equilibria of a games network.

4 Recall that ∆(C) denotes the set of all possible mixed-strategy profiles
5 ⊥ stands for an irrelevant value
6 Recall that by convention |A| = n.
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Theorem 1 (Largest Set of Global Equilibria). Let Γ = 〈A, C,U〉 be a games net-
work, let U ⊂ U , U = {gi = 〈Ai, ui〉} be a set of game nodes, and let A =

⋃

i Ai. Then, the
largest set of Mixed Games network equilibria for game nodes of U is7:

MGneΓ (U) =

⌈

⊕

i

mne(gi) ↑
A
Ai

⌉

5.4 An example of games network

a3

u1,3
.f.3 .t.3

.f.1 (1, 2) (1, 0)

.t.1 (1, 0) (0, 1)

a1

u1,2
.f.2 .t.2

.f.1 (2, 2) (0, 0)

.t.1 (0, 0) (1, 1)

a2

u2,4
.f.4 .t.4

.f.2 (1, 0) (0, 4)

.t.2 (1, 2) (1, 0)

a4

Fig. 1. Games network from section 5.4

Let us consider Γ = 〈A, C,U〉 the games network of fig. 1. We have:

– A = {a1, a2, a3, a4}, the agents
– Ci = {.f.i, .t.i}, ∀i ∈ A, the strategies of the agents
– U = {〈A1,3, u

1,3〉, 〈A1,2, u
1,2〉, 〈A2,4, u

2,4〉}, the game nodes where A1,3 = {a1, a3},
A1,2 = {a1, a2}, A2,4 = {a2, a4} and the payoffs functions are shown in fig. 1.

To compute the MGne of Γ , let us compute the mne of each sub game.
mne1,3 = mne(〈A1,3, u

1,3〉) =
{(

(1, 0), (1, 0)
)

;
(

(1
3 , 2

3), (1, 0)
)}

mne1,2 = mne(〈A1,2, u
1,2〉) =

{(

(1, 0), (1, 0)
)

;
(

(0, 1), (0, 1)
)

;
(

(1
3 , 2

3), (1
3 , 2

3)
)}

mne2,4 = mne(〈A2,4, u
2,4〉) =

{(

(0, 1), (1, 0)
)

;
(

(1
3 , 2

3), (1, 0)
)}

Thus, we can compute the Mixed Games network equilibria of Γ :

MGneΓ (U) =
{(

(
1

3
,
2

3
), (

1

3
,
2

3
), (1, 0), (1, 0)

)}

6 Structural modifications

The definition of games networks allows the combination of several games into a single
network. This puts the emphasis on the way that the network structure is determined,
because different structures can be proposed to model the same situation.

7 Definitions of d e,
⊕

and ↑A
Ai

are given in section 3, page 3.
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The definition of MGne seen in previous section provides the ability to define equiv-
alence between different games networks in section 6.1. The equivalence opens on the
possibility of establishing structural modifications of a games network. Operators allow-
ing such modifications are detailled in section 6.2. We will see in section 6.3 that this
possibility reveals the importance of an observer function used in the different operators.

6.1 Equivalence between Games Networks

Equivalence between two games networks is based on the equality of their equilibria. More
precisely, the equivalence is based on the largest set of global sets of equilibria:

Definition 11 (MGne Equivalence). Let Γ1 = 〈A1, C1,U1〉 and Γ2 = 〈A2, C2,U2〉 be
two games networks such that A1 = A2, C1 = C2. Γ1 and Γ2 are equivalent, denoted by
Γ1 ≡MGne Γ2, if and only if MGneΓ 1(U1) = MGneΓ 2(U2)

Informally, it means that both games networks have the same dynamics if we admit
that equilibria represent steady states of the network.

6.2 Operators

Operators detailled here allow us to modify the structure of a games network. Restruc-
turing games networks is expressed in terms of substituting game nodes by others. The
join operation or, conversely, the separation are the basic operations for games networks
reorganization.

However, the reorganization can be performed if the initial games network and that
resulting of the reorganization are equivalent in the sense of the definition 11.

Substitution The operation of substitution is formally defines as follows:

Definition 12 (Substitution). Let Γ = 〈A, C,U〉 be a games network, let U = {gi =
〈Ai, u

i〉}, U ⊆ U be a set of game nodes, let U ′ = {〈Ai′ , u
i′〉} be another set of game nodes

such that ∀i′, Ai′ ⊆ A, we define the substitution, denoted by Γ[U/U ′] as follows:.

Γ[U/U ′] = 〈A, C,U − U ∪ U ′〉

Join operation The join operation consists in joining two game nodes in one. It is
formally defined as follows:

Definition 13 (Join according to ω). Let Γ = 〈A, C,U〉 be a games network, let G1 =
〈A1, u

1〉 and G2 = 〈A2, u
2〉 be two game nodes of Γ (G1 ∈ U , G2 ∈ U), let ω : R × R 7→ R

be a function, we define: G1
∨ω G2 = 〈A1 ∪ A2, u〉 with :

∀c ∈ C(A1∪A2), ∀i ∈ A1 − A2 ui(c) = u1
i(c ⇓A1)

∀i ∈ A2 − A1 ui(c) = u2
i(c ⇓A2)

∀i ∈ A1 ∩ A2 ui(c) = ω(u1
i(c ⇓A1), u

2
i(c ⇓A2))

The join operation depends on a function ω. For instance, the maximum function max(v1, v2)
can be a candidate for giving a concrete definition of

∨

operation. If no specific property
on ω is required we omit it in the specification of the operation.
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Separation Separation is the reciprocal operation of the join operation. It consists in
spliting a game node in two others. However, we imposes that equilibria are preserved
during the separation. The separation, according to a function ω, is defined as follows:

Definition 14 (Separation according to ω). Let Γ = 〈A, C,U〉 be a games network,
a game node G = 〈A, u〉 ∈ U is said to be separable (according to ω) if:

∃G1 = 〈A1, u
1〉, ∃G2 = 〈A2, u

2〉 such that
G1

∨ω G2 = G and mne(G1
∨ω G2) = MGne({G1, G2})

6.3 Structural modifications and importance of the observer

Join operation and separation provides a general condition to restructure games networks
based on the preservation of the equilibria. A special attention is paid on the reciprocal
operation of the join because it enables us to split a games network into another one
composed of more elementary games. This leads to the following theorem which defines a
basic condition to perform modifications of the network.

Theorem 2 (Restructuration with separation). Let Γ = 〈A, C,U〉 be a games net-
work, let G ∈ U be a game node, and let G1 = 〈A1, u

1〉, G2 = 〈A2, u
2〉 be two game nodes

such that A = A1 ∪ A2.
If G is separable according to a function ω to (G1, G2) then we have:

Γ ≡MGne Γ[G/{G1,G2}]

Implicitly, the structural modifications are dependant on a particular function ω, called
observer and used in join or separation. Different observers will not allow or provide the
same structural modifications.

Whereas separation preserves equilibria, it is not the case with the join operation. Thus,
considering a games networks, the resulting joint game can be very different according to
the observer we use.

For example, let us consider the games network Γ from fig. 2 which is composed of two
game nodes g1,2 and g2,3. We use the join operator on these two game nodes; we obtain
ΓM with the Max function as observer, and Γ m with the min function. As we see on fig. 2,
none of the games network Γ and its two joint games Γ M and Γm has the same dynamics,
i.e. the same equilibria.

On the other hand, separation preserves equilibria. So, if a games networks can be
separate using two different observers, the resulting games networks have the same equi-
libria. However, observer influences the possibility of separation. Different observers allow
different games to be separated.

7 Elementary modules

In this section, given a games network Γ , we are interested in a games network Γ ′, called
normal form, which have the same equilibria as Γ , and which is composed of the smallest
possible game nodes (in sense of number of agents involved in the game node). Games
nodes of such a games network are called elementary games or elementary modules. The
normal form presented in section 7.1 is dependent on a given function (as join operation

10



Γ = 〈{a1, a2, a3}, {.f.i, .t.i}i∈[1:3], {g
1,2, g1,3}〉

a1

u1,2
.f.2 .t.2

.f.1 (1, 4) (0, 0)

.t.1 (0, 0) (1, 1)

a2

u2,3
.f. .t.

.f. (−2, 1) (0, 0)

.t. (0, 0) (1, 1)
23 a3

MGneΓ =
{(

(1, 0), (1, 0), (1, 0)
)

;
(

(0, 1), (0, 1), (0, 1)
)}

Γ M = g1,2 ∨Max
g2,3

a1 a2 a3 uM
1 uM

2 uM
3

.f.1 .f.2 .f.3 1 4 1

.f.1 .f.2 .t.3 1 4 0

.f.1 .t.2 .f.3 0 0 0

.f.1 .t.2 .t.3 0 1 1

.t.1 .f.2 .f.3 0 0 1

.t.1 .f.2 .t.3 0 0 0

.t.1 .t.2 .f.3 1 1 0

.t.1 .t.2 .t.3 1 1 1

MGneΓ M ⊃ MGneΓ ∪
{(

( 1
4
, 3

4
), ( 1

2
, 1

2
), (0, 1)

)}

Γ m = g1,2 ∨min
g2,3

a1 a2 a3 um
1 um

2 um
3

.f.1 .f.2 .f.3 1 −2 1

.f.1 .f.2 .t.3 1 0 0

.f.1 .t.2 .f.3 0 0 0

.f.1 .t.2 .t.3 0 0 1

.t.1 .f.2 .f.3 0 −2 1

.t.1 .f.2 .t.3 0 0 0

.t.1 .t.2 .f.3 1 0 0

.t.1 .t.2 .t.3 1 1 1

MGneΓ m =
{(

(0, 1), (0, 1), (0, 1)
)}

Fig. 2. Importance of the observer function

or separation operator in previous section). Section 7.2 extends the normal form to deal
with a class of functions. Section 7.3 presents a new notion, dependence, which allows us
to define, in section 7.4, an algorithm to compute a normal form.

7.1 Normal Form

Games network normal form is defined as follows:

Definition 15 (Normal Form according to a function). Let Γ be a games network,
ω : R

2 7→ R a function.
Γ is said to be ω−normal if it is not separable according to ω.

In normal form, each game node is called elementary game or elementary module.
A normal form can be computed by successive separations, that is each sub-game of a

game is obtained by separation according to the considered function ω. When separation
is applied, the agents are distributed in the two games resulting from separation. In this
case, they result from the impact that separation has on the agents. According to definition
13, the problem is reduced to the way in which the payoff function of each game node is
computed from the payoff function of the original game.

7.2 Ω−Normal Form

Structural modifications may generate infinite alternatives of games networks from a given
games network. For example, if we assume that ω selects the first argument regardless the

11



value of the second one then given a game node G = 〈A, u〉, we have G = G
∨ω G′, G′ =

〈A′, u′〉 providing mne(G) = mne(G′) and A′ ⊆ A. Thus, without additional constraints
there is no a priori unicity of the normal form.

Moreover, it seems also desirable that a normal form addresses a class of functions in-
stead of a specific function because we obtain a more general process for the reorganization.
Indeed, if we admit that ω formalizes the viewpoint of the observer, then, by addressing
a class of the functions Ω, the reorganization is compatible with the viewpoints of all the
observers of this class.

Among possible classes of functions, some of them appear to be more relevant for
modeling. We address the computation of the normal form for functions with neutral
element which are defined as follows:

Definition 16 (Function with Neutral Element). Let Ω be the set of idempotent
function with neutral element defined as follows:

Ω = {ω : R
2 7→ R|∃eω ∈ R, ∀x ∈ R, ω(x, eω) = ω(eω, x) = x}

In the sequel, the neutral element will be denoted by e if we do not consider a specific
function of Ω but a generic instance of them.

The extension of the normal form to Ω will be defined according to the properties
commonly shared by every functions of the class, that is, the neutral property. It is based
on a new definition of the join operator as follows:

Definition 17 (Ω-Join). Let Ω be the class of functions defined in 16. Let Γ = 〈A, C,U〉
be a games network, let G1 = 〈A1, u

1〉 and G2 = 〈A2, u
2〉 be two game nodes of Γ (G1 ∈

U , G2 ∈ U), we define:

G1

Ω
∨

G2 = 〈A1 ∪ A2, u〉

with :

∀c ∈ C(A1∪A2), ∀i ∈ A1 − A2 ui(c) = u1
i(c ⇓A1)

∀i ∈ A2 − A1 ui(c) = u2
i(c ⇓A2)

∀i ∈ A1 ∩ A2 ui(c) =







u2
i(c ⇓A2)) if u1

i(c ⇓A1) = eω

u1
i(c ⇓A1)) if u2

i(c ⇓A2) = eω

undefined otherwise

The definition of the join operator, is now compatible with any functions of the class.
Hence the separation is the same whatever the function ω is. This provides the ability to
compute a function regardless to the specificity of a specific function.

Definition 18 (Games Network Ω−Normal Form).

Let Γ be a games network, Ω the set of functions with neutral element.
Γ is said to be Ω−normal if any game node is inseparable according to the Ω join operator.

12



7.3 Dependence

With normal form, we are interested in finding elementary modules which composed the
network. Intuitively, agents involved in the same elementary module are agents of the
original network which are higly interacting. To precisely describe the interplays occurring
in a game, we define the notion of dependence between agents. Informally, an agent is
dependent on another if its payoffs are altered by the strategies of the other player.

Definition 19 (Agent dependence). Let 〈A, C, u〉 be a strategic game, let j, i ∈ A2, i 6=
j be two agents. j is said to be dependent on i, denoted by iδuj, if:

∃ci ∈ Ci, ∃c′i ∈ Ci, ∃c−i ∈ C−i, uj(c−i, ci) 6= uj(c−i, c
′
i)

The dependences provide an overview of the interplays of the agents in a game without
having carefully studying the payoff function. To get an abstraction of the dependences
according to a game, we introduce a new representation named the agent dependence graph.

Definition 20 (Agent Dependence Graph). Let G = 〈A, C, u〉 be a strategic game,
the agent dependence graph DG = 〈A, E〉 is a graph such that: E = {(i, j)|iδuj}

Definition 21 (Set of predecessors).
Let G = 〈A, C, u〉 be a strategic game. We denote by δ−u (j), j ∈ A, the set of predeces-

sors of j in the dependence graph of game G, that is

∀j ∈ A, δ−u (j) = {i ∈ A|iδuj}

The dependence relation for a game is extended to the dependence relation by consid-
ering a games network as follows:

Definition 22 (Dependence relation according to a games network). Let Γ =
〈A, C,U〉 be a games network, let i ∈ A and j ∈ A be two agents,

iδUj ⇔ ∃G = 〈A, u〉 ∈ U such that iδuj

(Definition of dependence graph is extended in the same way.)

Example 5. Let Γ be a games network, we consider the following game node

g = 〈{a1, a2, a3, a4}, u〉

where u is defined as follows:
a1 a2 a3 a4 u1 u2 u3 u4

.f.1 .f.2 .f.3 .f.4 0 0 1 1

.f.1 .f.2 .f.3 .t.4 0 0 1 0

.f.1 .f.2 .t.3 .f.4 0 0 0 1

.f.1 .f.2 .t.3 .t.4 0 0 0 0

.f.1 .t.2 .f.3 .f.4 1 2 1 0

.f.1 .t.2 .f.3 .t.4 1 2 1 1

.f.1 .t.2 .t.3 .f.4 1 2 0 0

.f.1 .t.2 .t.3 .t.4 1 2 0 1

.t.1 .f.2 .f.3 .f.4 2 1 0 1

.t.1 .f.2 .f.3 .t.4 2 1 0 0

.t.1 .f.2 .t.3 .f.4 2 1 1 1

.t.1 .f.2 .t.3 .t.4 2 1 1 0

.t.1 .t.2 .f.3 .f.4 0 0 0 0

.t.1 .t.2 .f.3 .t.4 0 0 0 1

.t.1 .t.2 .t.3 .f.4 0 0 1 0

.t.1 .t.2 .t.3 .t.4 0 0 1 1

13



From the table describing u, we can deduce the following dependencies: a1δua3, a2δua4,
a1δua2 and a2δua1

The corresponding dependence graph is shown on fig. 3

a3 a1 a2 a4

Fig. 3. Dependence graph for the games network from example 5

7.4 Algorithm

Many normal forms are possible given a games network. With the notion of dependence,
we have find an algorithm which computes a specific normal form. The algorithm considers
each game node as a network reduced to this node and computes a normal form with it.
Then, the obtained networks will be assembled to obtain a normal form of the complete
network.

Figure 4 presents the separate function which computes a normal form from a game
node, and for a given function ω ∈ Ω.

Let G = 〈A, u〉 the starting game node and ω the observer function. First, the separate
function research how many game nodes have to be created. The dependence graph is used
to emphasize the interactions between agents and thus determine which agents participate
to a same game node. The game nodes are defined by the agents which are involved in.
For each agent, a game node which contains all its predecessors exists and, given two game
nodes g1 = 〈A1, u1〉 and g2 = 〈A2, u2〉, we cannot have A1 ⊆ A2 or A2 ⊆ A1.

Once we have the game nodes, we have to compute the payoffs. Let a ∈ A be an agent
and g be a game node.

– If all the predecessors of a are in g, we can easily compute the payoffs for a, because
none of the absent agents in g have any influence on a’s payoffs. In fact, for any game
〈A∗, C∗, u∗〉, we have:

∀σ, σ′ ∈ ∆(C∗)2, ∀j ∈ A∗, σ ⇓δ−
u∗(j)

= σ′ ⇓δ−
u∗(j)

⇒ u∗
j (σ) = u∗

j (σ
′)

Thus, given a pure profile cg of g, each pure profile cG of G such that the restriction of
cG to the agents of g equals cg gives the same payoffs for a. The pick function in fig.
4 chooses one of these cG profile.

– If at least one of the predecessors of a is not in G, we cannot compute a’s payoff. Thus,
we give e, the neutral element of ω, to a as payoff.

Example 6. According to the algorithm and from the dependence graph, we can deduce
that the game node from example 5 is separated into three game nodes, each one having
2 agents. Figure 5 describes the resulting games network. Each game node is denoted by
gi,j = 〈{i, j}, u〉.
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Being given a game node 〈A, u〉, we define:
δ− : A 7→ 2A the set of predecessors in the agent dependence graph
agent : N 7→ 2A the set of agents connected to the game node.
pick : CA × (CA 7→ R) 7→ R,
pick(c′, u) gives a value u(c) such that the configuration c′ is contained in c.

function separate(〈A, u〉 : game node)
U ′ := ∅; g := 0;
/*Computation of the number of game nodes to be created*/
forall i ∈ A

g := g + 1;
agent(g) := i ∪ δ−u (i) ;

endforall
U = [1 : g];
forall g′ ∈ [1 : g]

U := U − {g′′ ∈ U |agent(g′′) ⊂ agent(g′) ∨ (agent(g′) = agent(g′′) ∧ g′′ < g′)};
endforall

/*Attribution of the payoffs*/
forall g ∈ U

forall j ∈ agent(g)
if δ−u (j) ∩ agent(g) = δ−

u (j) then
forall c ∈ Cagent(g) u

g
j (c) := pick(c, u)

else
forall c ∈ Cagent(g) u

g
j (c) := e

endif
endforall

U ′ = U ′ ∪ {〈agent(g), ug〉};
endforall
return U ′;

Fig. 4. Normal Form Algorithm for a Game Node

a3

g1,3 .f.3 .t.3

.f.1 (e, 1) (e, 0)

.t.1 (e, 0) (e, 1)

a1

g1,2 .f. .t.

.f. (0, 0) (1, 2)

.t. (2, 1) (0, 0)
12 a2

g2,4 .f. .t.

.f. (e, 1) (e, 0)

.t. (e, 0) (e, 1)
24

a4

Fig. 5. Normal form of the games network from example 6
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8 Conclusion

In this paper we have propose an extension of game theory, named games networks, which
provides a framework to model complex systems in terms of sets of interacting agents.
Whereas in game theory all the agents are interacting together, games networks allow us
to define local interactions which help us understand the structure of complex systems.

In games networks, an agent can play several games with different sets of agents; each
game represents local interactions. These interactions define a games network dynamics,
which is caracterized by its observable states, i.e. its steady states. We have defined the
notion of global equilibria which are steady states at the scale of the whole network,
and which are a composition of local equilibria (Nash equilibria of the different games
composing the network).

Different compositions of local interactions can provide the same global interactions.
For that reason we have define a global-equilibria-based equivalence in order to compare
two games networks. We have define structure modification operators (such as joint or
separation) to transform a games network to another equivalent network. We have par-
ticularly focus on the definition of a games network normal form that is a network where
each game can not be separated. The games in a normal form games network are called
elementary modules. We define an algorithm which compute a normal form, using the
separation operator. This algorithm is based on the notion of dependence, which allow us
to precisely study the interactions of a network.

Games networks have been used to model biological complex systems. In [3], we deals
with the Plasminogen Activation system (PAs). PAs is a process of signal transduction
implied in the migration of cancer cells. With games networks, we have been able to model
the system and to compute equilibria, which correspond to biological observable states: a
promigratory state, and a non-migratory one.

As perspectives of this work, we plan to deal with other biological systems (as the λ

phage for example). But some theoretical questions have to be answered such as the unicity
of games network normal form or the use of class of functions (different of the functions
with neutral elements). We are also interested in the dependence notion, more particularly
in the link between self dependence agents (agents which depend on themselves) and the
existence of global equilibria [9].
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