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Laboratoire de Méthodes Informatiques

Application of Game Theory
to Gene Networks Analysis

M. Manceny, A. Lackmy, C. Chettaoui, F. Delaplace

e-mail : {mmanceny, alackmy, chetta, delapla}@lami.univ-evry.fr

Rapport de Recherche no 114-2005

Juin 2005

CNRS - Université d’Evry–Val d’Essonne
Cours Monseigneur Roméro
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Abstract. In this paper, we propose a model for gene regulation based on game theory.
Game theory provides a framework to model the gene interplays by considering that interact-
ing genes play to the same game. It aims at providing a framework to express the functional
behavior resulting from the adaptation imposed by the imperative of competing biological
agents. The proposed model revisits the discrete model of gene regulation by considering
that steady states correspond to pure Nash equilibria. We present the model on the tumor
gene suppressors network.

1 Introduction

Properties of living organisms are the result of interplays between complex chemical sys-
tems. Understanding the complexity of the interaction of compounds molecular biological
systems is an important but challenging problem. This puts the emphasis on models to
describe, explain and predict the dynamics of such systems. In this paper, we propose a
model based on game theory in order to describe regulation between genes and to compute
steady states deduced from their interplays.

Game theory has been pioneering by Von Neumann and Morgenstern to define a theo-
retical framework to model complex interactions between players(agents) [21]. In biology,
evolutionary game theory has been successfully used to model evolution of population
resulting from Darwinian fitness [10–12, 15, 16]. For Wolf and Arkin ([22]), game theory
is a relevant framework to express the functional behavior which governs the dynamics in
the presence of biological agents in competition.

The use of game theory relies on the fact that the analysis of complex interplays
is required to compute characteristic behaviors. These works are based on the following
paradigm: each biological agent selects its actions (strategies), to maximize its adaptation,
according to its interactions with the environment.

To explain the strategies of the biological agents, the adaptation and evolutionary
stability is then preferred to the rationality of agents (which is commonly assumed in
game theory). Only the agents which survive and dominate have the effective strategies.

In this paper, we use the game theory in an operating way to express complex regulating
phenomena. We explain the stability of phenomena coming from regulatory process from
macroscopic rules which may identify some general features of the system. The analysis is
based on strategic games.

The paper is organized as follows: section 2 briefly recalls the main results on strategic
game theory and the definition of Nash equilibrium. In section 3, we show how the game
theory can be applied to analyze steady states of a gene network. The example is focused
on circuits which are at the core of many regulatory process in a genetic network such as
homeostasis and differentiation. We conclude in section 4.



2 Game theory

In this section, we summarize the main definitions of strategic game theory used in this
paper. They mainly concern the definition of the notion of strategic game and Nash equi-

librium. The reader can refer to the books [9, 13, 14, 17] for a complete overview of the
game theory and its applications.

We use the following notations for sets:

– [a : b] = {i ∈ Z|a ≤ i ≤ b} denotes an interval of discrete values bounded by a and b.

Concerning the profile, or vector, we adopt the following notations. Given a profile
c∗ = (c∗1, · · · , c∗n) ∈ C, C = ×jCj , we denote by:

– ∀i ∈ [1 : n], c∗
−i = (c∗1, · · · , c∗i−1, c

∗

i+1, · · · , c∗n). This excludes the ith component of a
profile.

– ∀i ∈ [1 : n], ∀ci ∈ Ci, (c
∗

−i, ci) = (c∗1, · · · , c∗i−1, ci, c
∗

i+1, · · · , c∗n). The notation distingui-
shes the ith component of the profile from the others.

2.1 Strategic games

Strategic game is a model of interplays where each agent chooses its plan of action (or
strategy) once and for all. These choices are made simultaneously and for each strategic
choice, payoffs are associated to agents. Moreover, each agent is rational and perfectly
informed of the payoff function of other agents. Thus, they aim at maximizing their payoffs
while knowing the expectation of other agents.

Definition 1 (Normal or Strategic Representation). A strategic game Γ is a 3−uple

< A, C, u > where:

– A is a set of players or agents.

– C = {Ci}i∈A is a set of strategy sets where each Ci is a set of strategies available for

the agent i, Ci = {c1
i , · · · , cmi

i }.
– u = (ui), i ∈ A is a vector of functions where each ui : C 7→ R, i ∈ A is the payoff

function of the agent i.

For a 2× 2−Game which is commonly used to illustrate notions in game theory (that
is a game with 2 agents and 2 strategies by agent), the game is usually represented by a
Tableau.

Definition 2 (Representation of a 2×2−Game by a Tableau). Given a 2×2−game
〈

{1, 2},
(

(c1
1, c

2
1), (c

1
2, c

2
2)

)

, (u1, u2)
〉

, such that the payoff values are:

u1(c
1
1, c

1
2) = w1 , u2(c

1
1, c

1
2) = w2

u1(c
1
1, c

2
2) = x1 , u2(c

1
1, c

2
2) = x2

u1(c
2
1, c

1
2) = y1 , u2(c

2
1, c

1
2) = y2

u1(c
2
1, c

2
2) = z1 , u2(c

2
1, c

2
2) = z2

Then the tableau is defined as follows :

c1
2 c2

2

c1
1 (w1, w2) (x1, x2)

c2
1 (y1, y2) (z1, z2)
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2.2 Nash equilibrium

Nash equilibrium is a central concept of the game theory ([14]). This notion captures
the steady states of the play for a strategic game in which each agent holds the rational
expectation about the other players behavior. A pure Nash equilibrium corresponds to a
strategic profile c (or vector) where ci is the strategy “chosen” by the player i.

Definition 3 (Pure Nash equilibrium of a strategic game). Let < A, C, u > be a

strategic game, a pure Nash equilibrium is a profile of strategies c∗ ∈ C with the property

that:

∀i ∈ A, ∀ci ∈ Ci, ui(c
∗

−i, ci) ≤ ui(c
∗

−i, c
∗

i )

In other words, no agent can unilaterally deviate of a pure Nash equilibrium without de-

creasing its payoff.
A pure Nash equilibrium can be considered as a best reply for all the agent, that is

the response which maximizes the outcome while considering the strategies of the other
agents.

3 Application to Gene Regulatory Networks

Game theory can be applied for each interaction occurring in a gene network. However,
its interest relies on interaction when the expression of a gene has an impact on the other
genes. Hence, the gene game becomes really strategic when genes reciprocally regulate
themselves. Circuits of genes in gene network embody such interplays. In this section, we
examine each component of a game by considering its respective use for the definition of
a model. We study the case of elementary regulation and elementary circuits. We finally
present our results on the biological example of the tumor gene suppressors ([8, 23]).

3.1 Model

Genetic regulation consists in the control of the expression of the rate of transcripts of
genes. In models of genetic regulation, two possible actions are considered: activation and
inhibition. A gene activates a target gene if the increase of its expression rate leads to the
increase of the expression of the target. In contrary, in an inhibiting activity, the increase
of the expression of the regulatory gene leads to a decrease of the expression of the target.
This is often modeled as a labeled graph where an edge represents a regulatory activity.
The inhibition is modeled by an edge having a minus sign whereas a plus sign label of an
edge represents an activation (see Fig. 2).

States are defined by expression levels which discretize the production rate of proteins.
In discrete model of regulation, such as René Thomas’model ([19, 20]) and its generaliza-
tions ([3, 18]), a specific level corresponds to a capability to interact with other genes. The
ability to regulate gene at a given level cannot necessary be maintained in another level.
For the corresponding model some important concepts have to be defined.

Strategies are used to characterize the different observable states of a system. Thus, strate-
gies depend on the states of the agent. For genetic regulation, levels are strategies, because
a level characterizes a specific capability to interact with other genes in a discrete model
([3, 4, 19, 20]).
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The payoff function plays an essential rule in the modeling of the dynamics because it
governs the computation of Nash equilibria which define the steady states of the system.
From each value attributed to strategy profiles, we are able to determine an order on
configurations. Thus, order on outcomes classifies the response of a given agent according
to a fixed configuration for other agents. The order may change from a configuration to
another. It qualifies the adaptation of the response.

In order to describe how the modeling proceed, we detail it on elementary regulations:
a gene activating, or inhibiting, another gene.

3.2 Application to elementary regulation

The regulatory interplays are mainly described by the outcome given for each configura-
tion of states. We aim at determining some general rules which govern the payoffs. Since
equilibria remain identical up to a positive linear transformation, many payoff functions
can fit to model the regulation. However, they must maintain the same relative local order
between configuration of strategies. Hence, we investigate on the determination of general
rules which govern order of the payoffs for each agent. One of this rule is to privilege the

expression.

More precisely, let us consider the case where x activates y. Let us suppose that x has
the strategy 0, that is x has no positive influence on y, so y should be in state 0 rather
than in state 1. If the strategy of x is 1, x has a positive influence on y, and the best state
for y is 1. The relations between the different states of y are well defined, according to the
state of x: the payoff for ((x = 0), (y = 0)) is greater than the payoff for (0, 1), and the
payoff for (1, 0) is inferior to the payoff for (1, 1). That can be considered as a qualitative
view.

A possible model to privilege the expression is to add that the payoff for (0, 0) is less
than the payoff for (1, 0). Quantitatively, we decide to give a null payoff for ((x = 0), (y =
0)), which represents the state where there is no activity. Table 1 represents the simplest
tables we can define with natural numbers for activation and inhibition.

x
+
−→ y 0 1

0 0 −1
1 1 2

x
−

−→ y 0 1

0 1 2
1 0 −1

In tables, x is the regulator and y is the regulated agent. The tables give the payoff for the regulated
gene y. Strategies of the first column are those of x, and strategies of the first raw correspond to those
of y.

Table 1. The Elementary payoff function for genetic regulation

Once the elementary payoff functions are defined, we can combine and adapt them in
order to form a more complex regulatory game.
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3.3 Application to elementary circuits

Two kinds of circuits are usually distinguished: positive and negative. The first ones have
an even number of minus signs while the last ones have an odd number. René Thomas
claims [19] that positive circuits are involved in differentiation process whereas negative
circuits play an essential rule in homeostasis. Positive circuits produce multi-stationarity,
that is several potential steady states which are reachable according to the initial state.

Elementary circuits are composed of two nodes and two edges. They are considered as
paradigms of regulation involved in differentiation and homeostasis. Figure 1 shows the
four possible elementary circuits, the tableau of the payoff function corresponding to each
circuit and the pure Nash equilibria which can be computed from the payoffs. Circuits 1
and 2 are positive circuits whereas circuits 3 and 4 are negative ones.

Elementary circuits Tableau Forms Pure Nash equilibria

1)

x y

+

+

x
+/+
←→ y 0 1

0 (0, 0) (1,−1)
1 (−1, 1) (2, 2)

{(0, 0), (1, 1)}

2)

x y

−

−

x
−/−

←→ y 0 1

0 (1, 1) (0, 2)
1 (2, 0) (−1,−1)

{(1, 0), (0, 1)}

3)

x y

+

−

x
−/+
←→ y 0 1

0 (1, 0) (0,−1)
1 (2, 1) (−1, 2)

{}

4)

x y

−

+

x
+/−

←→ y 0 1

0 (0, 1) (1, 2)
1 (−1, 0) (2,−1)

{}

Fig. 1. Elementary circuits, tableau forms and pure Nash equilibria

Bringing the results to the effect of the circuit regulation, we observe that the pure

Nash equilibria are steady-states which correspond to the multi-stationary states whereas

the lack of pure Nash equilibria is representative of the presence of feedback loops which

leads to homeostasis.
More precisely, for case 1) we have two possible states which are (0, 0) and (1, 1). The

former corresponds to the absence of protein productions for x and y. This leads to a
steady state where no gene are expressed. The latter corresponds to the presence of the
both proteins which is the other steady state of the circuits.

It is worth noting that each of the 4 circuits has mixed Nash equilibrium1. For instance,
in case 3), the circuit admits the state ((1/2, 1/2), (1/2, 1/2)) as a mixed Nash equilibrium.

1 Mixed Nash equilibria are an extension of pure Nash equilibria, which correspond to a probabilistic
distribution over the strategies of each agent.
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This state corresponds to a situation where agent x plays its 0−strategy once on two and
its 1−strategy one time out of two (in the same way for agent y). Such an equilibrium
might be assimilated to a singular state.

3.4 Tumor gene suppressors game

Gene modeling has been applied on various realistic cases including transduction signaling
([6]). In this subsection, we focus on gene regulation occurring for tumor gene suppressors.

Cell division is a highly conserved and strictly regulated process in eukaryotic cells.
This process, preceded by a long phase of preparation called interphase, ends with the
formation of two identical daughter cells that contain the same genetic information as the
mother cell. The cell cycle can be divided into two principal steps: interphase, composed
of three successive phases (G1, S and G2), and cell division denoted as mitosis. A cell
spends most of its lifetime in interphase; for instance, in rapidly dividing cells interphase
generally takes 16 to 24 hours so that mitosis lasts only 1 to 2 hours ([1]). The G1 phase
consists of optimal growth, S phase results in DNA duplication and G2 phase permits
DNA reparation of damages that occurred during the replication ([2]).

There are various mechanisms that monitor cell cycle progression and keep the integrity
of genetic information ([1, 2]). Indeed, some genes defined as tumor gene suppressors are
able to arrest cell cycle in critical checkpoints, to repair DNA injury or induce cell death.
We are interested in cell regulation by p53-p21/cyclin-dependent-kinase 2 pathway. The
p53 gene suppressor prevents G1/S transition by stimulating p21 gene transcription. The
p21 protein takes part in this regulation by inhibiting protein kinases expression like
cyclin-dependent-kinase 2 (cdk2) ([23]).

In tumor cells, cdk2 protein has to be associated with the cyclin E protein, to down-
regulate p53 transcription. These cells despite mutations are able to go through the check-
point G1/S and to continue the cell cycle ([8]). Network which corresponds to these data
is shown on Fig. 2.

Thus, we can consider that the network has 2 steady states. On the first one, p53 and
p21 are activated and prevent the G1/S transition. On the second one, p53 and p21 are
inactivated but cdk2 is activated and allows the cell division.

p21 cdk2

p53

+

−

−

Fig. 2. The tumor gene suppressors network

To model the regulatory network from Fig. 2, we have to consider the different relations
between genes. Table 2 gives the payoffs associated to each of the three edges from the
network.
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p53
+
−→ p21 0 1

0 0 −1
1 1 2

p21
−

−→ cdk2 0 1

0 1 2
1 0 −1

cdk2
−

−→ p53 0 1

0 1 2
1 0 −1

Table 2. Payoffs associated to each edge of the regulatory network from Fig. 2

Thus, we have to build the final payoffs. Because we have 3 genes, there is 8 possibilities
for the configurations of the network. Table 3 explains the final payoffs. For example, if
we consider the first row, all the genes are in state 0. With the payoffs from Table 2, we
can determine that because p53 and p21 are in state 0 the payoff associated to p21 is 0...

Strategies Payoffs
p21 p53 cdk2 p21 p53 cdk2

0 0 0 0 1 1
0 0 1 0 0 2
0 1 0 1 2 1
0 1 1 1 −1 2
1 0 0 −1 1 0
1 0 1 −1 0 −1
1 1 0 2 2 0
1 1 1 2 −1 −1

Pure Nash equilibria = { (0,0,1) , (1,1,0) }

Table 3. Payoffs and pure Nash equilibria associated to the network from Fig. 2

Once we have the payoffs, we can determine the pure Nash equilibria (Table 3). The
two pure Nash equilibria found are (p21 = 0, p53 = 0, cdk2 = 1) and (p21 = 1, p52 =
1, cdk2 = 0). The first one corresponds to cell division and the last one to prevent the
G1/S transition, which is what was expected.

4 Discussion and future work

In this paper, we have proposed to model gene regulation by formulating the gene inter-
plays as a game. In gene games, a strategy represents a characteristic level of expression
which corresponds to a regulatory ability. In this context, pure Nash equilibria represent
discrete characteristic configurations of gene states and their computation depends on the
payoff function. The definition of the payoff function is central in the model to explain
the equilibria. This appears to follow some global rules at the scale of the game. In fact,
the payoff is monotonous compared to the expected concentration rate of the translated
proteins.

Perspective of this work is to extend the model to scale in number of genes and in
complexity. The model provides a suitable framework for games with a small number
of interacted genes. However, in order to enlarge the number of processed genes at the
scale of an organism, one needs to revisit the model. The goal is to have computational
framework which efficiently process large set of interacted genes. Moreover, dealing with
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complexity does not merely relies on number of genes scaling but also on ability of analysis.
In particular, we investigate on the modularity of gene interactions.

In biological networks, groups of co-expressed genes are observed. Each group can be
viewed as a module representing a set of local interactions. With the game theory model,
each gene is interacting with all the other genes. It would be interesting to refine this
model to deal with modularity. This extends the model by integrating local interactions
pioneered in Game Theory by Ellison ([7]).

By considering the size scaling and the modularity of the regulatory networks, we
propose to include the locality in model. This leads to extend game theory into the Theory
of Games Networks. The reader may refer to [5] for the formalism of Games Networks.
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