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Abstract. In this paper we present an extension of the game theory named games networks.
The purpose of this extension is to define a framework for the specification of modular inter-
actions, i.e. localised to groups of agents. Briefly, the games networks describe the situation
where each player plays different games at the same time with several different players. It
is graphically represented by a network (or graph) of games. We present this theoretical
extension on strategic games. We more particularly focus on the determination of a global
equilibrium from local Nash equilibria and on the structural reorganizations of a game while
preserving the global equilibria. We propose an automatic reorganization of a games network
which computes a normal form for a games network.
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1 Introduction

The game theory originated more than 50 year ago [13] to tackle problems involving
interdependencies among several agents. It provides a modeling framework to characterize
complex interplays in a large variety of fields such as Biology [8, 14], Economy [9, 10],
Computer Science [16, 1]. For instance in social and economical fields, it aims at analyzing
situations where agents take decisions with the consciousness that outcomes of their own
choices depend on the others. The decisions aim at maximizing payoffs and the choices
are assumed to be the result of a rational behavior. The rationality is however a metaphor
suited for human interaction. In biology, adaptation and Darwinian selection are preferred
to motivate the strategies of the agents.

A large number of results on game theory are centered on the Nash equilibrium [12]. A
Nash equilibrium corresponds to an optimal strategy chosen by an agent to maximize its
outcome while considering the rational behaviors of the other agents which also attempt to
maximize their outcomes. No agent can unilaterally deviate of a Nash equilibrium without
decreasing its outcome.

The game theory however corresponds to a local theory in the sense that it focuses
on specific interactions of a given group of agents for the computation of Nash equilibria.
To analyze the interactions on the scale of the entire system, it is often required to get
a structured view of the system organization. The analysis of the properties of a system
is often based on the study of the properties of sub-structures of the system. Each sub-
part is named a module. A module puts in correspondence a structure and characteristic



properties of dynamics. Analyzing modular activities appears to be a central step on the
understanding of a system because it determines an organization of a system from its sub-
systems. For each sub-system, one may associate a particular function which takes part in
the explanation of dynamics of the complete system. The resulting function is then viewed
as a complex composition of functions handled by sub-systems. For instance in biology, this
approach is developed to understand the interplays occurring in molecular networks [7, 17,
3, 20, 18]. Not only this approach makes it possible to characterize the organization of a
system but it also makes it possible to reduce the cost of the Nash equilibrium computation
by introducing two levels in the computation: local computations with groups of few agents,
and their assembly giving the total equilibrium.

To tackle with the description of the modularity, we propose an original theoretical
framework named Games network 1. The games network theory extends the game theory
by considering that agents can be involved in different games at the same time. Conse-
quently, each game to which an agent participates must be considered to determine its
strategy. Informally a games networks is determined by a set of agents playing to a game
node. The network represents several games connected to agents. A games network can
be conveniently drawn by a bipartite graph with two classes of nodes. A node of the first
class represents games whereas a node of the the second represents agents

If we admit that the interactions between agents in a module are embodied by game
node, an agent does not specifically belong to a single module but to different modules.
For instance, in biology the definition appears to suit the investigation of the modularity
of molecular activities [7].

More precisely, the paper is focused on three aspects of the games network: the spec-
ification of a games network, the determination of the games network equilibria and the
reorganization of games networks. Nash equilibria are often used to characterize steady
states. The games networks will be used to study steady states of a system while consid-
ering the conditions of passage of the local stable states toward a global state. Especially,
from the conditions, it is possible for us to establish structural equivalences between var-
ious networks; equivalences which are based on the equality of the steady states. To a
certain extent, the equality may be considered as an equivalence between dynamics. The
specifications of a variety of dynamically equivalent structures puts forward the problem
to characterize other comparison criteria of structural nature. Indeed, it enables us to re-
organize a games network in order to have structural variant of an initial games network.
Reorganizing a games network provides structurally different models, but which have the
same dynamics. Scanning different models helps to get different standpoints on a studied
system which puts the emphasize on different features of the system. For example, in bi-
ology reorganizing a games network is performed to discover groups of biological agents
whose regulation tightly depends on other agents of the group. It is often expected that
such agents play a significant role in the regulation [2, 4].

Generally speaking, reorganizing a games network while preserving the dynamics,
stresses the different features of the system which support the observed dynamics. A
particular attention is paid to the more detailed games networks, that is, games networks
which cannot be reorganized according to the principles given for the reorganization. To
some extent, they constitute the basic building blocks of the considered games network.

1 English translation of réseau de jeux
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In this paper, after the presentation of the games network theory, we propose an
automatic method to reorganize a games network in order to get fully detailed games
networks. Their computation corresponds to the computation of a normal form according
a set of allowed transformations.

The paper is organised as follows : Section 2 briefly recalls the main results on strategic
game theory. It specifies also certain definitions adapted to the context of the paper. Sec-
tion 3 presents the extension of strategic games to games networks. We detail the games
network structure. Section 4 deals with the combination of games in a games network. We
define the central notion of games network equilibrium in a game. From this notion we
introduce the notion of equivalence between games networks. This equivalence is based
on the preservation of the equilibria between games networks. From this condition, we
define an automatic procedure to reorganize games networks. It aims at characterizing the
normal form of a games network, introduced in section 5. The reorganization is based on
a separation process of the games network. In section 6, we discuss the contribution of
the theory of the games networks for the analysis of the modular behaviors. We illustrate
the way in which the games networks models the effects of the coupling of under systems.
We conclude in section 7. Throughout the paper, examples and applications are mostly
inherited from molecular biology where modules appear to be a central notion for expla-
nation of biological functions, but games network theory can be applied to other fields
which require a modular specification of interactions.

1.1 Notations

In the paper, we use the following notations:

– [a : b] = {i ∈ Z|a ≤ i ≤ b} denotes a discrete interval bounded by a and b.

– |A| denotes the cardinal of a set A.

– Let i ∈ A, i also denotes the singleton {i} if it is required by the context of the
operation.

– nth denotes the rank of an integer in an integer subset according to the natural order

nth : N
+ × 2N

+
7→ N

+, nth(i, A) =

{

|{j ∈ A | j ≤ i}| if i ∈ A

undefined else

For example, we have nth(5, {1, 3, 5, 7}) = 3.

– Let C = {Ci}i∈A be a set of sets, we note CA = ×i∈ACi.

– Let A = [1 : n], given C = {Ci}i∈A, we denote by C∗
A =

⋃

X⊆A CX , the set of all
k−uples of C with 0 ≤ k ≤ n

– We consider the lifted version of A and noted Alift = A + {⊥,>} where the elements
Bottom denoted by ⊥ and Top denoted by > are added to A.

– We define the operator ⊕ : Alift × Alift 7→ Alift as follows:

• ∀α ∈ Alift, α ⊕⊥ = ⊥⊕ α = α,

• ∀α ∈ Alift, α ⊕> = >⊕ α = >,

• ∀α ∈ Alift, α ⊕ α = α,

• ∀(α, α′) ∈ A2
lift, α 6= α′ ⇒ α ⊕ α′ = >.

(Alift,⊕) is a semi-group with ⊥ as a neutral element and > as an absorbing element.
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– The extension of the operator to profiles (or vectors) and set of profiles is defined as
follows, considering C = {Ci}i∈A, a set of sets:

∀(c, c′) ∈ C2
A, c ⊕ c′ = (ci ⊕ c′i)i∈1:n

∀(C, C ′) ∈ 2CA , C ⊕ C ′ = {c ⊕ c′|c ∈ C, c′ ∈ C ′}

For example, we have:
(a, b, c) ⊕ (a, d,⊥) = (a,>, c),

{(a, b, c), (a, d, c)} ⊕ {(a, d,⊥), (x, y, c)} = {(a,>, c), (a, d, c), (>,>, c)}
– Let X ⊆ An

lift, n ≥ 1, we denote by dXe the set of profiles of X where each profile does
not contain neither ⊥ nor >, that is,

dXe = {c ∈ X|∀i ∈ [1 : n], ci 6= > ∧ ci 6= ⊥}

Concerning the profiles or vectors, we adopt the following notations: given A = [1 : n],
given a profile c ∈ CA of a set CA = ×i∈ACi, we denote by:

– c−i = (c1, · · · , ci−1, ci+1, · · · , cn); this excludes the ith component of a profile.

– (c−i, ci) = (c1, · · · , ci−1, ci, ci+1, · · · , cn) = c; the notation distinguishes the ith com-
ponent of the profile from the others. This notation is extended to sets of indices,
(c−X , cX), X ⊂ [1 : n].

– Let C = {Ci}i∈A; we note C−i = ×j∈A−iCj .

We use the scatter operator which scatters values of a profile.

Definition 1 (Scatter).

We define the Scatter operator as follows: c ↑B
A : C∗

A × 2
N

+
× 2

N
+
7→ (C∗

A)⊥,

∀i ∈ [1 : max(B)], (c ↑B
A)i =

{

cnth(j,A) ∃j ∈ A ∩ Bsuch that nth(j, B) = i

⊥ else

Example 1. For instance, given the following profile (a, b, c, d), we have:

(a, b, c, d) ↑
[1:8]
{1,3,7}= (a,⊥, b,⊥,⊥,⊥, c,⊥)

(a, b, c, d) ↑
{1,2,3,7,8}
{1,3,7} = (a,⊥, b, c,⊥,⊥,⊥,⊥)

(a, b, c, d) ↑
{1,2,8}
{1,3,5,17}= (a,⊥,⊥,⊥,⊥,⊥,⊥,⊥,⊥)

2 Strategic Games

In this section we give definitions of the game theory used in this paper. Although the
section is mainly devoted to a summary of the definitions of the main notions encountered
in game theory, we also refine some of them. Especially, we define a dedicated structure
for strategies and we define the notion of dependency between agents.

The reader may refer to the books [15, 11, 5] for a complete overview of the game theory
and their applications.
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2.1 Definition of a strategic game

Strategic Game is a model of interplays where each agent chooses its plan of action (or
strategy ) once and for all, and these choices are made simultaneously. Moreover each
agent are rational and perfectly informed of the payoff function of other agents. Thus they
aim at maximizing their payoffs while knowing the expectation of other agents.

Definition 2 (Normal or Strategic Representation ).

A strategic Game Γ is a 3−uple 〈A, C, u〉 where:

– A is a set of players or agents.

– C = {Ci}i∈A is a set of strategy sets where each Ci is a set of strategies available for
the agent i, Ci = {c1

i , · · · , cm
i }.

– u = (ui), i ∈ A is a vector of functions where each ui : C 7→ R, i ∈ A is the payoff
function of the agent i.

Usually, the number of agents as well as the number of strategies are supposed to
be greater than 2. However, in the paper, we admit games having either one strategy
or one agent. We said that such games are degenerated because they do not represent
strategic interactions between agents. But in our model, they remain games because the
game structure can be defined and the equilibrium can be computed.

In order to conveniently combine sets of strategies, we define the strategy as follows:

Definition 3 (Set of Strategies). Let 〈A, C, u〉 be a strategic game, let Σ∗ be a set of
labels. The set of strategies C = {Ci}i∈A is defined as follows ∀i ∈ A, Ci = {(i, σ), σ ∈ Σ∗}.

By this definition, the fact that agents share the same strategies do not interfere in
the union of sets of strategies. It fulfills the following property (proposition 1 ) which is
important for the union of strategies.

Proposition 1. Let A, A′ be two sets of agents,

∀CA, ∀CA′ , A ∩ A′ = ∅ ⇒ CA ∪ CA′ = CA∪̇CA′

(recall that ∪̇ stands for the disjoint union)

From given properties of the payoff functions like dominance, it is possible to charac-
terize properties on game equilibria. The property which will interest us in this paper is
the Pareto optimality. This property will be used in proposition 2.

Definition 4 (Pareto optimality of a strategy).

Let 〈A, C, u〉 be a strategic game, the strategy ci ∈ Ci
2 is Pareto optimal if

∀c−i ∈ C−i, ∀c′i ∈ Ci, ∀j ∈ A, uj(c−i, ci) ≥ uj(c−i, c
′
i)

For games with two players, the structure can be conveniently represented by a tableau
t. The cell ti,j contains the pair (u1(c

i
1, c

j
2), u2(c

i
1, c

j
2)). The definition 5 details the repre-

sentation by tableau.

2 Note that ci does not represent the ith strategy of an agent, but a strategy of the ith agent
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Definition 5 (Representation of a 2 × 2−Game by a Tableau).

Given a 2 × 2−game
〈

{1, 2},
(

(c1
1, c

2
1), (c

1
2, c

2
2)

)

, (u1, u2)
〉

, such that the payoff values
are :

u1(c
1
1, c

1
2) = w1 u2(c

1
1, c

1
2) = w2

u1(c
1
1, c

2
2) = x1 u2(c

1
1, c

2
2) = x2

u1(c
2
1, c

1
2) = y1 u2(c

2
1, c

1
2) = y2

u1(c
2
1, c

2
2) = z1 u2(c

2
1, c

2
2) = z2

Then the tableau is defined as follows :
c1
2 c2

2

c1
1 (w1, w2) (x1, x2)

c2
1 (y1, y2) (z1, z2)

Example 2. For instance, let us consider the following game, G = 〈A, C, u〉. Strategies
describe characteristics states of the agents. In the system, we consider that the agent
a1, a2 have two characteristic states {.f., .t.} where .f. stands for false or off and .t.

stands for true or on. The game works as a switch between the two agents – that is, if
an agent is .t., the other one is .f.and conversely. The payoff function maximizes the
.t.state. The normal form is defined as follows:

– A = {a1, a2}

– C = {{.f.1, .t.1}, {.f.2, .t.2}}. In the sequel, we omit the index 1, 2 for the strategies
if no ambiguity occurs.

– u =

.f. .t.

.f. (0, 0) (1, 1)

.t. (1, 1) (0, 0)

To precisely describe the interplays occurring in a game, we define the notion of dependency
between agents. Informally, an agent is dependent on another if its choices are altered by
the strategies of the other player.

Definition 6 (Agent dependency).

Let 〈A, C, u〉 be a strategic game, let j, i ∈ A2, i 6= j be two agents, j is said to be
dependent on i for the choice of its strategies, denoted by iδuj, if:

∃ci ∈ Ci, ∃c′i ∈ Ci, ∃c−i ∈ C−i, uj(c−i, ci) 6= uj(c−i, c
′
i)

By extension a strategic game is dependent if it exists at least a dependency between
two agents of the game. A game is strongly dependent if any agent of the game is dependent
on another one. The dependencies provide an overview of the interplays of the agents in
a game without having carefully studied the payoff function. To get an abstraction of the
dependencies according to a game, we introduce a new representation named the agent
dependence graph.

Definition 7 (Agent Dependence Graph).

Let G = 〈A, C, u〉 be a strategic game, the agent dependence graph DG = 〈A, E〉 is a
graph such that: E = {(i, j)|iδuj}
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Definition 8 (Set of predecessors).

Let G = 〈A, C, u〉 be a strategic game. We denote by δ−u (j), j ∈ A, the set of predeces-
sors of j in the dependence graph of game G, that is

∀j ∈ A, δ−u (j) = {i ∈ A|iδuj}

Example 3. In the previous game introduced in example 2, the two agents are mutually
dependent (2δu1, 1δu2) because:

u1(.t., .f.) 6= u1(.t., .t.) and u2(.f., .t.) 6= u2(.t., .t.)

2.2 Nash Equilibrium

Nash Equilibrium is the central concept of the game theory. This notion captures the
steady states of the play of a strategic game in which each agent holds the rational expec-
tation about the other players behavior. Pure Nash Equilibrium (PNE) corresponds to
a strategic profile c (or vector) where ci is the strategy “chosen” by the player i. A pure
Nash equilibrium is defined as follows:

Definition 9 ((Pure) Nash Equilibrium of a Strategic Game).

Let 〈A, C, u〉 be a strategic game, a Pure Nash Equilibrium is a profile c∗ ∈ CA of
strategies with the property that :

∀i ∈ A, ∀ci ∈ Ci, ui(c
∗
−i, ci) ≤ ui(c

∗
−i, c

∗
i )

In other words, no agent can unilaterally deviate from a PNE without decreasing its payoff.

A pure Nash equilibrium can be considered as a best reply for all the agents, that is the
reply which maximizes the outcome while considering the strategies of the other agents.
We define the set of the pure Nash equilibria of a game as follows (definition 10):

Definition 10 (Set of Pure Nash Equilibria).

Let G = 〈A, C, u〉 be a game, we define the set of pure Nash equilibria:

pne(G) = {c∗ ∈ CA|ui(c
∗
−i, ci) ≤ ui(c

∗
−i, c

∗
i ), ∀i ∈ A, ∀ci ∈ Ci}

Pure Nash Equilibria are extended to Mixed Nash Equilibria which is based on a prob-
abilistic definition of the strategic profile c where each ci becomes a vector of probabilities,
representing the distribution on player’s strategies [12, 11].

3 Games Network

A games network corresponds to an extension of the game theory which defines modular
interactions localized to different subsets of agents. Each module corresponds to a specific
game defined by a payoff function. Parameters of the payoff function are strategies of agents
involved in the game. Agents are shared between different modules and play different games
in parallel. However they have the same set of strategies for every games they play. In a
games network, several games are combined to form a more general structure of Networks.
In this section, we address the main definitions of a games network.
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3.1 Definition of a Games Network

The definition of a games network mainly consists in defining a set of agents connected to
a set of games. The normal form of a games network is as follows:

Definition 11 (Games Network).

A games network is a 3−uple 〈A, C,U〉 where

– A is a set of agents or players.

– C = {Ci}i∈A is a set strategies.

– U = {〈A, u〉} is a set of game nodes where each A ⊆ A is a set of agents and
u : A × CA 7→ R is a set of payoff functions such that u = {ui : CA 7→ R}i∈A. (We
can notice that, by convention, the first argument corresponding to the signature of u

is the index i.)

A games network offers a synthetic representation to define the different interplays
between several players. The structure 〈A, u〉 totally determines a game played by a subset
of agents since it useless to include the strategies which are the same for any agent of the
network. A games network is represented by a bipartite graph 〈A,U , E〉, E ⊆ A×U where
an edge (i, 〈A, u〉) is a member of E if and only if i ∈ A.

The definition of the game networks would lead to the construction of some undesirable
games networks. For instance, you may include degenerated game nodes with no strategic
interplays (e.g. ui(c) = cste, ∀c, ∀i). Thus, among possible games networks, we distinguish
well-formed games networks to the others.

Definition 12 (Well-Formed Games Network).

Let Γ be a games network, Γ is well-formed if:

– Any game node have dependent agents.

– A the set of agents of a game node is not a subset of any set of agents of another game
nodes.

The dependence relation introduced in section 2 for a game is extended to the depen-
dence relation by considering a games network as follows:

Definition 13 (Dependence relation according to a games network).

Let Γ = 〈A, C,U〉 be a games network, let i ∈ A and j ∈ A be two agents,

iδUj iff ∃G = 〈A, u〉 ∈ U , iδuj

(Definitions of dependence graph and set of predecessors are extended to games networks
in the same way)

3.2 Restriction

A game node can be viewed as a sub game of a larger game played by the whole agents of
the network. In this section, we equip the theory with the restriction operator to provide
the ability to put the focus on an arbitrary sub game.
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Definition 14 (Profile Restriction).
Let A = [1 : n] be a discrete interval representing a set of agents, let {Ci}i∈A be a set

of strategy sets, given a profile c ∈ CA (recall that CA = ×i∈ACi), we define its restriction
to a subset A ⊆ A, denoted by c↓A: CA × 2

A 7→ (CA)lift, as follows3 :

(c↓A)i =

{

ci if i ∈ A

⊥ else

The restriction is obviously extended to a set of profiles by applying the operation to
every element.

Example 4. Let A = [1 : 4], we have (c1, c2, c3, c4)↓{1,3}= (c1,⊥, c3,⊥)

The previous definition (14) restricts the profile to relevant values according to a subset
of agents, named its support. A profile of values defined by a restriction is considered as
a local profile of a subset of agents. Whatever the values associated to other agents are,
they will not be considered for a local profile.

//The extension of the restriction corresponds to the scatter operation defined as
follows:

By extension, given a game G = 〈A, C, u〉, the restriction of a game to a subset X ⊆ A,
G↓X , corresponds to a game where only strategies and payoff functions of the agents of
X are relevant.

Definition 15 (Game Restriction).
Let G = 〈A, C, u〉 be a strategic game, we define its restriction by a set X ⊆ A as

follows:
G↓X= 〈A, {Ci}i∈X ∪ {{⊥j}}j∈A−X , u⊥〉

where
∀i ∈ A, ∀cX ∈ CX , u⊥i(⊥−X , cX) = max{ui(c−X , cX)|c−X ∈ C−X}

The restriction also concerns the computation of the equilibria. In this case, the com-
putation of Nash equilibria only considers the elements specified in the restriction

Definition 16 (pne Restriction).
Let G = 〈A, C, u〉 be a game, let X ⊆ A be a set of agents, we define the restriction of

the Nash equilibrium property as follows:

pne↓X (G) = {c∗ ∈ CA|ui(c
∗
−i, ci) ≤ ui(c

∗
−i, c

∗
i ), ∀i ∈ X, ∀ci ∈ Ci}

Example 5. Let us consider the following game G = 〈A, C, u〉 defined by its normal form:
A = {a1, a2}, C = {{.f.1, .t.1}, {.f.2, .t.2}}, and u the payoffs function.

u =

.f. .t.

.f. (0, 0) (1, 1)

.t. (1, 0) (0, 0)

Thus, pne(G) = {(.f.1, .t.2), (.t.1, .f.2)}.
According to the previous restriction definitions, we have the following results:

3 ⊥ stands for an irrelevant value

10



– Profile Restriction:
• pne(G)↓{a2}= {(⊥1, .t.2), (⊥1, .f.2)}

– Game Restriction:
• The restriction G↓{a2} corresponds to the payoff functions :

u⊥ =
.f.2 .t.2

⊥1 (1, 0) (1, 1)

• pne(G↓{a2}) = {(⊥1, .f.2)}
– pne Restriction:

• pne↓{a2} (G) = {(.f.1, .t.2), (.t.1, .f.2), (.t.1, .t.2)}
• pne↓{a1} (G) = {(.f.1, .t.2), (.t.1, .f.2)}

The restriction applied to profiles will be used in the next section to put the focus on a
sub-part of a profile which corresponds to a games node. The restriction applied to games
or Nash equilibria calculation can be used to reduce the computational. The preceding
definition directs the reduction towards a reduction in the number of functions to be
analyzed (definition 16). Concerning the calculation of the Nash equilibria, the following
proposition investigates another aspect: enabling the commutation of the restriction and
equilibria calculation.

Proposition 2 (PNE & Restriction Commutation). Let G = 〈A, C, u〉 be a strategic
game, let X ⊆ A be a set of agents, if ∀c∗ ∈ pne(G), ∀i ∈ A−X, c∗i is Pareto optimal then

pne(G)↓X= pne(G↓X)

Proof. To prove the commutation, it suffices to prove that ∀c∗ ∈ pne(G), c∗↓X∈ pne(G↓X).
Without loss of generality we assume that X = A − i, i ∈ A – that is, only one agent
is restricted. Assuming that c∗i is Pareto optimal for all Nash equilibria c∗ ∈ pne(G), let
j ∈ A be an agent
By definition of the Nash equilibrium, we have:

ui(c
∗
−i, c

∗
i ) ≥ ui(c

∗
−i, ci), ∀ci ∈ Ci.

Since c∗i is a Pareto optimal strategy by hypothesis, we have:

uj(c
∗
−i, c

∗
i ) ≥ uj(c

∗
−i, ci), ∀j ∈ A, ∀ci ∈ Ci.

By definition of the Nash equilibrium and the Pareto optimal strategy, we have:

uj(c
∗
−i−j , c

∗
i , c

∗
j ) ≥ uj(c

∗
−i−j , c

∗
i , cj) ≥ uj(c

∗
−i−j , ci, cj), ∀j ∈ A, ∀ci ∈ Ci, ∀cj ∈ Cj .

By definition 14 of the restriction on games, and according to the previous inequalities, we
can conclude that:

u⊥
j (c∗−i−j ,⊥i, cj) = uj(c

∗
−i−j , c

∗
i , cj), ∀j ∈ A, ∀cj ∈ Cj .

Thus, the following inequality holds:

uj(c
∗
−i−j ,⊥i, c

∗
j ) ≥ uj(c

∗
−i−j ,⊥i, cj), ∀j ∈ A, ∀cj ∈ Cj .

which is the condition of a Nash equilibrium. So, we have:

(c∗−i,⊥i) = c∗↓A−i∈ pne(G↓A−i).

�
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Example 6. Let’s consider two variants of the game of example 2 where the payoff functions
are defined as follows :

1© u =

.f. .t.

.f. (2, 1) (1, 0)

.t. (1, 0) (0, 0)

, u =

.f. .t.

.f. (2, 1) (1, 0)

.t. (1, 0) (0, 2)

2©

The restriction G↓{a2} respectively corresponds to the payoff functions :

1© u⊥ =
.f. .t.

⊥ (2, 1) (1, 0)
, u⊥ =

.f. .t.

⊥ (2, 1) (1, 2)
2©

In both cases, the Nash equilibrium is (.f., .f.) and its restriction according to a2 is (⊥, .f.).
In case 1©, the restricted Nash equilibrium of the game is also a Nash equilibrium of the
restricted game. In case 2©, the Nash equilibrium for the restricted game is (⊥, .t.) and
is different of the restriction of the Nash equilibrium of the original game. In case 1©, the
strategy .f.1 is Pareto optimal whereas there is no Pareto optimality in case 2©.

We extend the restriction operator by removing bottom elements (⊥) from the pro-
file, but the order of the other values is conserved in the resulting profile. We note the
composition of the removals and restriction operation as follows: c ⇓X

The following proposition gives some equivalences using the restriction operator.

Proposition 3. Let 〈A, C, u〉 be a game, ∀X ⊆ A the following propositions hold:

c↓X = (c ⇓X) ↑A
X , ∀c ∈ CA

dCA↓X ⊕Se = S , ∀S ⊆ CA

dpne↓X1 (G) ⊕ pne↓X2 (G)e = pne↓X1∪X2 (G) , ∀X1 ⊆ A, ∀X2 ⊆ A

Proof. The proves are let to the reader. �

Example 7. Let us consider the game defined in example 5. We have:

pne↓{a1} (G) ⊕ pne↓{a2} (G) = {(⊥1,⊥2), (.t.1, .f.2), (.t.1,⊥2), (.f.1, .t.2), (⊥1, .t.2)}

Thus,
⌈

pne↓{a1} (G) ⊕ pne↓{a2} (G)
⌉

= {(.f.1, .t.2), (.t.1, .f.2)} = pne(G).

3.3 Orientation

To complete the representation, we graphically (see example 8) distinguish three categories
of interactions : in, out and undirected. The interaction categories correspond to labels
of edges in the bipartite graphs. They are graphically represented by arrows for in and out

interactions and unoriented edges for undirected interactions. They are used to qualify
the payoff functions of a game node. The in interaction means that the game node (local
payoff function) does not affect the choice of the input agent, that is, given a strategy,
the outcome remains the same whatever the other agents’ strategies. The out interaction
means that the strategies are the result of the game, that is the agent is dependent on the
other agents but they are not dependent on it. Formally we define :

12



Definition 17 (Orientation of Interactions).
Let 〈A, u〉 be a game node, let i ∈ A be an agent.

– The interaction (i, 〈A, u〉) is in if:
∀c ∈ CA, ∀c′ ∈ CA, ui(c) = ui(c

′)
– The interaction (i, 〈A, u〉) is out if:

∃ci ∈ Ci, ∃c−i ∈ C−i, ∃c′−i ∈ C−i, ui(c−i, ci) 6= ui(c
′
−i, ci)∧

∀j ∈ A − i, ∀c−i ∈ C−i, ∀ci ∈ Ci, ∀c′i ∈ Ci, uj(c−i, ci) = uj(c−i, c
′
i)

Given a game G = 〈A, C, u〉 we note by in(A) (resp. out(A)) the set of agents having
in (resp. out) interactions. A game with in interactions do not perform selections. The
orientation of the graph describes the way that agents interact in a game. The following
proposition simplifies the computation of the Pure Nash Equilibria because it restricts the
computation to equilibria for agents which are member of the support since the chosen
strategy of agents which are not members of the support is only ⊥ by definition.

Proposition 4. The Nash equilibria of a node game G = 〈A, u〉 having agents with in

interactions is defined as follows :

pne(G) = pne↓A−in(A) (G)

Proof. : the proof is let to the reader.

Corollary 1. The computation of Pure Nash Equilibria of a game G = 〈A, u〉 having
exclusively in or out interactions is determined as follows :

pne(G) = pne↓out(A) (G)

If we consider that a games network is the modeling of regulatory interplays between
agents then in interactions means that the agent acts as regulators since payoffs of other
agent potentially depends on her strategies but it is insensitive to strategies of others by
this node game. out interaction means that the agent is regulated by a game and it is the
result of the game. In summary, setting an interaction in or out to a node game is used
to describe some properties of the payoff functions in order to simplify the computation
of the Nash equilibrium. in-out games are used to represent interplays which are mainly
directed by some agents which governs the definition of the equilibria. They are considered
to be “easy” because the computation of the pure nash equilibria relies on the computation
of the maximal outcomes of the out agent (corollary 1)

This can be used to describe a behavior of an agent which can be modeled by a function
taking strategies of other as arguments.

Given a function f : C−i 7→ Ci, the pure Nash Equilibria of following payoff function
uf gives the extensive definition of the function in the form ((c−i, f(c−i)))– that is every
profiles (c−i, f(c−i)) belong to a pure Nash Equilibria.

Proposition 5. Let f : CX 7→ Ci be a function, let G = 〈A, C, u〉 be a strategic game
such that A = X ∪ {i} (note that C−i = CX) where u is defined as follows :
let (α0, α, β) ∈ R

3 such that α < β, we have

ui(c) =

{

β if c = (c−i, f(c−i))
α otherwise

uj(c) = α0, ∀j 6= i

We have : pne(G) = {(c−i, f(c−i)) |c−i ∈ CX}

13



Proof. the proof is let to the reader. �

Example 8. The following games network

〈{a1, a2, a3}, {{.f., .t.}, {.f., .t.}, {.f., .t.}}, {〈{a1, a2, a3}, u〉〉

describes the boolean or operation – that is, a3 = a1 ∨ a2. The table u below describes
the payoff functions u.

a1 a2 a3 u1 u2 u3

.f. .f. .f. 0 0 1

.f. .f. .t. 0 0 0

.f. .t. .f. 0 0 0

.f. .t. .t. 0 0 1

.t. .f. .f. 0 0 0

.t. .f. .t. 0 0 1

.t. .t. .f. 0 0 0

.t. .t. .t. 0 0 1

According to the table, we can conclude that in(G) = {a1, a2} and out(G) = {a3} which
can be represented by the following games network.

a2

a1

a3

a1 a2 a3 u1 u2 u3

.f. .f. .f. 0 0 1

.f. .f. .t. 0 0 0

.f. .t. .f. 0 0 0

.f. .t. .t. 0 0 1

.t. .f. .f. 0 0 0

.t. .f. .t. 0 0 1

.t. .t. .f. 0 0 0

.t. .t. .t. 0 0 1

Fig. 1.

This can also be more concisely described by : u1(c) = 0, u2(c) = 0, u3(c) = if (c1∨c2 =
c3)then 1 else 0, ∀c ∈ {.f., .t.}3

4 Combination of Games

The definition of a games network allows the combination of several games into a single
network. This puts the emphasis on the way that the network structure is determined,
because different structures can be proposed to model the same situations. In order to
compare them, it is necessary to identify the equivalence between games networks. The
conditions of equivalence investigated in the paper are based on the equilibria. Informally,
two games are equivalent if their equilibria are the same. Such a condition requires to
enlarge the equilibrium locally computed from game nodes to the whole games network.

14



The equilibrium at the scale of the network is named the games network equilibria (Gne).
The Gne extends local equilibrium to subnetworks. The subsection 4.1 formally defines the
equilibria.

4.1 Games Network Equilibrium

An extension of the Nash equilibrium to networks consists in defining an equilibrium at the
scale of the network. Informally, a games network equilibrium corresponds to a compatible
association of local equilibria. We assume that agents follow the single played strategy rule,
that an agent plays the same strategy for every connected games. Hence, a global network
equilibria must respect this rule. The definition of Gne can of course be applied to the
whole network. But the restriction to the a subset of game node allow us to define regions
where equilibria are compatible.

Definition 18 (Pure Games Network Equilibrium).

Let Γ = 〈A, C,U〉 be a games network, let c∗ = (c1, · · · , cn) be a strategy profile of
every agents, (recall that by convention |A| = n), c∗ is a pure games network equilibrium
of a subset U ⊆ U if:

∀〈A, u〉 ∈ U, c∗ ⇓A is a pure Nash equilibrium of the game 〈A, (Ci)i∈A, u〉.

The definition of the Gne provides the ability to define an equivalence between differ-
ent representations of a games network. An equivalence between two games networks is
based on the equality of their equilibria. Informally, it means that both games networks
have the same dynamics if we admit that equilibria represent steady states. However, the
equivalence between two structures is based on the largest set of global sets of equilibria
which is defined as follows:

Theorem 1 (Largest Set of Global Equilibria).

Let Γ = 〈A, C,U〉 be a games network, let U ⊂ U , U = {gi = 〈Ai, ui〉} be a set of game
nodes, and let A =

⋃

i Ai. Then, GneΓ (U) =
⌈
⊕

i pne(gi) ↑
A
Ai

⌉

is the largest set of games
network equilibria c∗ ∈ CA for games nodes of U

Proof. – Assume that it exists a games network equilibrium for U , c∗ ∈ C∪iAi
.

– By definition 18 of pure games network equilibrium we have, ∀〈A, u〉 ∈ U, c∗ ⇓A is a
local Nash equilibrium.

– By definition of restriction operator, c∗ can be rewritten as c∗ =
⊕

i c
∗↓Ai

.

– According to the proposition 3, we have c∗ =
⊕

i c
∗ ⇓Ai

↑AAi
with c∗ ⇓Ai

∈ pne(gi)

– So c∗ belongs to GneΓ (U).

�

In the sequel, we omit Γ if no ambiguity occurs.

Definition 19 (Gne Equivalence).

Let Γ1 = 〈A1, C1,U1〉 and Γ2 = 〈A2, C2,U2〉 be two games networks such that A1 =
A2, C1 = C2.

Γ1 and Γ2 are equivalent, denoted by Γ1 ≡Gne Γ2, if and only if GneΓ 1(U1) = GneΓ 2(U2)

15



4.2 Conditions of separation

The previous requirement defines the structural equivalences according to the equivalence
of the dynamics. This opens on the possibility of establishing transformations of a struc-
ture. We will see that this possibility reveals the importance of the observer when setting
agents in module. In this subsection we focus on the basic operations operating on games
nodes, that is, joining and separating games.

Restructuring games networks will be expressed in terms of substituting game nodes
by others. Definition 20 formally defines this operation.

Definition 20 (Substitution).
Let Γ = 〈A, C,U〉 be a games network, let U = {gi = 〈Ai, u

i〉}, U ⊆ U be a set of
games nodes, let U ′ = {〈Ai′ , u

i′〉} be another set of game nodes such that ∀i′, Ai′ ⊆ A, we
define the substitution, denoted by Γ[U/U ′] as follows:.

Γ[U/U ′] = 〈A, C,U − U ∪ U ′〉

We define the Join operation between game nodes as follows:

Definition 21 (Join according to ω).
Let Γ = 〈A, C,U〉 be a games network, let G1 = 〈A1, u

1〉 and G2 = 〈A2, u
2〉 be two

game nodes of Γ (G1 ∈ U , G2 ∈ U), let ω : R×R 7→ R be a function, we define: G1
∨ω

G2 =
〈A1 ∪ A2, u〉 with :

∀c ∈ C(A1∪A2), ∀i ∈ A1 − A2 ui(c) = u1
i(c ⇓A1)

∀i ∈ A2 − A1 ui(c) = u2
i(c ⇓A2)

∀i ∈ A1 ∩ A2 ui(c) = ω(u1
i(c ⇓A1), u

2
i(c ⇓A2))

The join operation depends on a function ω. For instance, the maximum function
max(v1, v2) can be a candidate for giving a concrete definition of

∨

operation. If no specific
property on ω is required we omit it in the specification of the operation.

The join operation or, conversely, the separation are the basic operations for games
networks reorganization. However, the reorganization can be performed if the initial games
network and that resulting of the reorganization are equivalent in the sense of the definition
19. Definition 22 and theorem 2 address the equivalence between games networks which
can be obtained by joining or separating games nodes. It provides a general condition to
restructure games networks based on the preservation of the equilibria. A special attention
is paid on the reciprocal operation of the join because it enables us to split a games
network into another one composed of more elementary games. The separation, according
to a function ω, is defined as follows:

Definition 22 (Separation according to ω).
Let Γ = 〈A, C,U〉 be a games network, a game node G = 〈A, u〉 ∈ U is said to be

separable (according to ω) if:

∃G1 = 〈A1, u
1〉, ∃G2 = 〈A2, u

2〉 such that
G1

∨ω
G2 = G and pne(G1

∨ω
G2) = Gne({G1, G2})

It leads to the following theorem which defines a basic condition to perform modifica-
tions of the network.
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Theorem 2. Let Γ = 〈A, C,U〉 be a games network, Let G ∈ U be a game node,let
G1 = 〈A1, u

1〉, G2 = 〈A2, u
2〉 be two game nodes such that A = A1 ∪ A2, if G is separable

according to ω to G1, G2 then we have:

Γ ≡Gne Γ[G/{G1,G2}]

Proof. The proof is an immediate consequence of the definition 22. �

The following propositions establish some relationships between game separation and
depencies. They are central to automatically decide whether or not a game is separable.
Application of the propositions and network modifications will be presented in the nex
section.

Proposition 6. Let Γ = 〈A, C,U〉 be a games network, and let G = 〈A, u〉 ∈ U be a game
node wich is separable into G1 = 〈A1, u

1〉 and G2 = 〈A2, u
2〉. Then

∀(i, j) ∈ A2, iδuj ⇒ {i, j} ⊆ A1 ∨ {i, j} ⊆ A2

Proof. Let Γ, G, G1, G2 be defined according to the proposition, and let us suppose we have
found (i, j) ∈ A2 such that

iδuj ∧ {i, j} 6⊆ A1 ∧ {i, j} 6⊆ A2

Because G1
∨

G2 = G, we have A1 ∪ A2 = A. So considering i ∈ A1, we have

i ∈ A1 − A2, j ∈ A2 − A1

By definition of the separation and joint:

∀(ci, c
′
i) ∈ C2

i , ∀c−i ∈ C−iuj(c−i, ci) = u2
j ((c−i, ci) ⇓A2)

Because i 6∈ A2, ∀(ci, c
′
i) ∈ C2

i , ∀c−i ∈ C−i, (c−i, ci) ⇓A2= (c−i, c
′
i) ⇓A2. So

∀(ci, c
′
i) ∈ C2

i , ∀c−i ∈ C−i, uj(c−i, ci) = uj(c−i, c
′
i)

That is i 6 δuj, which is false. �

Proposition 7. Let Γ = 〈A, C,U〉 be a games network, and let G = 〈A, u〉 ∈ U be a game
node wich is separable according to ω into G1 = 〈A1, u

1〉 and G2 = 〈A2, u
2〉. Then

∀(i, j) ∈ A2, iδuj ⇒ iδu1j ∨ iδu2j

Proof. Let Γ, G, G1, G2 be defined according to the proposition, and let us suppose we have
found (i, j) ∈ A2 such that

iδuj ∧ i 6 δu1j ∧ i 6 δu2j

Because of proposition 6, we know that either {i, j} ⊆ A1 or {i, j} ⊆ A2. Let us suppose
that {i, j} ⊆ A1. So, two cases should be considered.
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– If j 6∈ A2.

∀(ci, c
′
i) ∈ C2

i , ∀c−i ∈ C−i, uj(c−i, ci) = u1
j ((c−i, ci) ⇓A1)

Because i 6 δu1j, u1
j ((c−i, ci) ⇓A1) = u1

j ((c−i, c
′
i) ⇓A1). Thus,

∀(ci, c
′
i) ∈ C2

i , ∀c−i ∈ C−i, uj(c−i, ci) = uj(c−i, c
′
i)

And i 6 δuj

– If j ∈ A2.

∀(ci, c
′
i) ∈ C2

i , ∀c−i ∈ C−i, uj(c−i, ci) = ω(u1
j ((c−i, ci) ⇓A1 , u

2
j ((c−i, ci) ⇓A2)

However, i 6 δu1j ∧ i 6 δu2j. Thus,

∀(ci, c
′
i) ∈ C2

i , ∀c−i ∈ C−i, uj(c−i, ci) = uj(c−i, c
′
i)

And i 6 δuj, which is false.

�

5 Games Network Normal Form

The previous section describes the necessary conditions to operate the separation of a game
node. They are based on conservation of the equilibria of the games network. Separation
depends on a particular function ω which embodies the standpoint of the observer on the
structuring of the system.

The importance of the reorganization of a game lies in the simplification which it allows.
Separation changes the interactions which seem complex at first sight into combinations of
interactions implying less agents and, thus, simpler to comprehend. It helps to reduce the
complexity of the description of the system without reducing that of its dynamics because
the equilibria are preserved.

This puts the emphasis on the games network reorganization to simplify it. Being
given a games network Γ , we aim at defining a Games Network Normal Form – that is,
a reorganization which cannot be reorganized again according to the defined constraints.
However reorganization may generate infinite alternatives of games networks from a given
games network. Obviously, we have G = G

∨

G whatever the game node G. More generally,
if we assume that ω selects the first argument regardless the value of the second one
then given a game node G = 〈A, u〉, we have G = G

∨ω
G′, G′ = 〈A′, u′〉 providing

pne(G) = pne(G′) and A′ ⊆ A. Thus, without additional constraints there is no a priori
unicity of the normal form.

Moreover, it seems also desirable that a normal form addresses a class of functions in-
stead of a specific function because we obtain a more general process for the reorganization.
Indeed, if we admit that ω formalizes the viewpoint of the observer, then, by addressing
a class of the functions Ω, the reorganization is compatible with the viewpoints of all the
observers of this class.

Among possible classes of functions, some of them appear to be more relevant for
modeling. We address the computation of the normal form for functions with neutral
element. It is defined as follows:
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Definition 23 (Function with Neutral Element).
Let Ω be the set of idempotent function with neutral element defined as follows:

Ω = {ω : R
2 7→ R|∃eω ∈ R, ∀x ∈ R, ω(x, eω) = ω(eω, x) = x}

In the sequel, the neutral element will be denoted by e if we do not consider a specific
function of Ω but a generic instance of them.

The subsection 5.1 gives the definition of a normal form. The subsection 5.2 defines
Ω−normal form, and gives an algorithm to compute it.

5.1 Normal form according to a function

The normal form is defined as follows:

Definition 24 (Normal Form according to a function).
Let Γ be a games network, ω : R

2 7→ R a function.
Γ is said to be ω−normal if it is inseparable according to ω.

A normal form can be computed by successive separations, that is each sub-game of
a game is obtained by separation according to the considered function ω. It relies on the
identification of topological properties of the agent dependence graph. When separation is
applied, the agents are distributed in the two games resulting from separation. The criteria
governing separation may be determined according to the dependence graph. In this case,
they result from the impact that separation has on the agents. According to definition
21, the problem is reduced to the way in which the payoff function of each games node is
computed from the payoff function of the original game.

The following propositions show that a normal form obtained by separation preserves
the dependences and that the agents belonging to the same game of the normal form must
be in dependence relation.

Proposition 8. Let Γ = 〈A, C,U〉 be a games network. Let Γf = 〈A, C,Uf 〉 be a normal
form of Γ , obtained by separation. Then

∀(i, j) ∈ A2, iδUj ⇒ iδUf
j

Proof. The proposition is an immediate consequence of propositions 6 and 7.

Proposition 9. Let Γ = 〈A, C,U〉 be a games network, let Γf = 〈A, C,Uf 〉 be a normal
form of the games network Γ obtained by separation. Then

∀Gf = 〈Af , uf 〉 ∈ Uf , ∀X1 ⊆ Af , ∀X2 ⊆ Af ,

X1 ∩ X2 = ∅ ∧ X1 ∪ X2 = A ⇒ ∃i ∈ X1, ∃j ∈ X2, iδUj ∨ jδU i

Proof. Assume that

∃G = 〈A, u〉 ∈ Uf , ∃X1 ⊆ A, ∃X2 ⊆ A,

X1 ∩ X2 = ∅ ∧ X1 ∪ X2 = A ∧ (∀i ∈ X1, ∀j ∈ X2, i 6 δuj ∧ j 6 δui)
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By the independence which implies the invariance of payoffs of agents of X1 for config-
urations of CX2 and conversely, we can define two games G1 = 〈X1, u

1〉 and G2 = 〈X2, u
2〉

as follows:
u1

i (c ⇓X1) = ui(c ⇓X1 , c ⇓X2) ∀c ⇓X2∈ CX2 , ∀i ∈ X1

u2
j (c ⇓X2) = uj(c ⇓X1 , c ⇓X2) ∀c ⇓X1∈ CX1 , ∀j ∈ X2

By definition of the join operator (definition 21), we have:

G = G1

∨

G2

To prove the separation we also must prove the equivalence between equilibria. By
definition,

pne(G) = {c∗ ∈ CA | ui(c
∗) ≥ ui(c), ∀i ∈ A, ∀c ∈ CA}

Gne(G1, G2) = {c∗ ∈ CA | c∗ ⇓X1∈ pne(G1) ∧ c∗ ⇓X2∈ pne(G2)}

However pne(G1) = {c∗1 ∈ CX1 | u1
i (c

∗
1) ≥ u1

i (c1), ∀i ∈ X1, ∀c1 ∈ CX1}, thus we have:

Gne(G1, G2) = {c∗ ∈ CA | u1
i (c

∗ ⇓X1) ≥ u1
i (c ⇓X1)∧

u2
j (c

∗ ⇓X2) ≥ u2
j (c ⇓X2),

∀i ∈ X1, ∀j ∈ X2, ∀c ∈ CA}

Let c∗ ∈ Gne({G1, G2}) and i ∈ A. Because X1 ∩ X2 = ∅ ∧ X1 ∪ X2 = A, either
i ∈ X1 − X2 or i ∈ X2 − X1. Let us suppose i ∈ X1 − X2, then:

∀c ∈ CA, ui(c) = ui(c ⇓X1 , c ⇓X2) = u1
i (c ⇓X1) ≤ u1

i (c
∗ ⇓X1) = ui(c

∗))

Thus, ∀i ∈ A, ∀c ∈ CA, ui(c) ≤ ui(c
∗); that is c∗ ∈ pne(G).

Let c∗ ∈ pne(G) and c ∈ CA, i ∈ X1, j ∈ X2 (thus i ∈ X1 − X2 and j ∈ X2 − X1).

u1
i (c ⇓X1) = ui(c ⇓X1 , c ⇓X2) = ui(c) ≤ ui(c

∗) = u1
i (c

∗ ⇓X1)

u2
j (c ⇓X2) = uj(c ⇓X1 , c ⇓X2) = uj(c) ≤ uj(c

∗) = u2
j (c

∗ ⇓X2)

So, c∗ ∈ Gne(G1, G2), and

pne(G) = Gne(G1, G2)

Thus, the game G can be separated to {G1, G2}, which is false. �

The normal form of a games network can be specified from an order on games network
based on the consideration that a games network is greater than another one if the former
is the result of several separations of the latter.

Definition 25 (Games Network Order).

Let 〈A1, C1,U1〉, 〈A2, C2,U2〉 be two games networks, the order �Ω is defined as follows:

〈A1, C1,U1〉 �Ω 〈A2, C2,U2〉 if and only if :
A1 = A2, C1 = C2,

∀G = 〈A, u〉 ∈ U1, ∃{Gi = 〈Ai, ui〉}i=1,n ⊆ U2, G =
∨Ω

i=1,n Gi
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5.2 Ω−Normal Form

We considered here Ω, the set of functions with neutral element (definition 23). The
extension of the normal form to Ω will be defined according to the properties commonly
shared by every functions of the class, that is, the neutral property. It is based on a new
definition of the join operator as follows:

Definition 26 (Ω-Join).
Let Ω be the class of functions defined in 23. Let Γ = 〈A, C,U〉 be a games network,

let G1 = 〈A1, u
1〉 and G2 = 〈A2, u

2〉 be two game nodes of Γ (G1 ∈ U , G2 ∈ U), we define:

G1

Ω
∨

G2 = 〈A1 ∪ A2, u〉

with :

∀c ∈ C(A1∪A2), ∀i ∈ A1 − A2 ui(c) = u1
i(c ⇓A1)

∀i ∈ A2 − A1 ui(c) = u2
i(c ⇓A2)

∀i ∈ A1 ∩ A2 ui(c) =







u2
i(c ⇓A2)) if u1

i(c ⇓A1) = eω

u1
i(c ⇓A1)) if u2

i(c ⇓A2) = eω

undefined else

The definition of the join operator, is now compatible with any functions of the class.
Hence the separation is the same whatever the function ω is. This provides the ability to
compute a function regardless to the specificity of a specific function.

Definition 27 (Games Network Ω−Normal Form).
Let Γ be a games network, Ω the set of functions with neutral element.

Γ is said to be Ω−normal if any game node is inseparable according to the Ω join operator.

Considering a Ω−normal form obtained by separation, the following proposition shows
that, for each agent, a game containing all its predecessors exists.

Proposition 10. Let Γ = 〈A, C,U〉 be a games network, and G = 〈A, u〉 a game node of
Γ . Let Ω defined in 23 and let Γf = 〈A, C,Uf 〉 be the Ω−normal form of G obtained by
separation; we have:

∀j ∈ A, ∃Gf = 〈Af , uf 〉 ∈ Uf , {j} ∪ δ−u (j) ⊆ Af

Proof. Let Γ, G and Γf be defined as in lemma 10, and suppose we have j ∈ A such that:

∀Gf = 〈Af , uf 〉 ∈ Uf , {j} ∪ δ−u (j) 6⊆ Af

That is
∀Gf = 〈Af , uf 〉 ∈ Uf , j 6∈ Af ∨ (j ∈ Af ∧ ∃i ∈ δ−u (j), i 6∈ Af )

Because Γf is obtained by successive separation, in one step of its construction we have a
game node G0 = 〈A0, u

0〉 which contains j and all its predecessors; in the next step, G0

is separated in G1 = 〈A1, u
1〉 and G2 = 〈A2, u

2〉 and none of them contains j and all its
predecessors.
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Let us suppose j has more than two predecessors (see proposition 6 for the case where
j has just one predecessor). Let i1, i2 be two predecessors of j: {i1, i2} ⊆ δ−u (j). Because of
proposition 6, i1 and j must be in a common game and i2 and j also must be in a common
game. Because not G1 nor G2 contains j and all its predecessors, we can suppose

{i1, j} ⊆ A1 and i2 6∈ A1

{i2, j} ⊆ A2 and i1 6∈ A2

By definition of the join operator, we have

∀c ∈ CA0 , u
0
j (c) =







u2
j(c ⇓A2)) if u1

j(c ⇓A1) = eω

u1
j(c ⇓A1)) if u2

j(c ⇓A2) = eω

undefined else

And because u0 is well defined,

∀c ∈ CA0 , u
1
j(c ⇓A1) = eω ∨ u2

j(c ⇓A2) = eω

That is either i2 6 δ−u (j)) or i1 6 δ−u (j)), which is false. �

Many normal forms are possible given a game network. The following algorithm defines
the computation of a specific normal form.

Schematically, it considers each node as a network reduced to this node and computes a
well-formed normal form with it. Then, the obtained networks will be assembled to obtain
a normal form of the complete network.

According to the previous proposition, each agent belongs to the same game that
those on which it depends. This affects the calculation of the local payoff function. Indeed,
thanks to this property (proposition 10), we can preserve the variations of the outcomes
due to the predecessors in the dependence graph.

Let G = 〈A, C, u〉 be a game, let Γf = 〈Af , Cf ,Uf 〉 be the Ω−normal form of G. The
payoff is defined as follows:

∀Gf = 〈Af , uf 〉 ∈ Uf , ∀c ∈ CA,

u
f
j (c ⇓Af

) =

{

if δ−u (j) ∩ Af = δ−u (j) then uj(c ⇓δ−u (j), c ⇓A−δ−u (j))

else e

Example 9. Let Γ be a games network, we consider the following game node

g = 〈{a1, a2, a3, a4}, u〉

where u is defined as follows:
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Being given a game node 〈A, u〉, we define:
δ− : A 7→ 2A the set of predecessors in the agent dependence graph
agent : N 7→ 2A the set of agents connected to the game node.
pick : CA × (CA 7→ R) 7→ R,
pick(c′, u) gives a value u(c) such that the configuration c′ is contained in c.

function separate(〈A, u〉 : game node)
U ′ := ∅; g := 0;
forall i ∈ A

g := g + 1;
agent(g) := i ∪ δ−

u (i) ;
endforall
U = [1 : g];
forall g′ ∈ [1 : g]

U := U − {g′′ ∈ U |agent(g′′) ⊂ agent(g′) ∨ (agent(g′) = agent(g′′) ∧ g′′ < g′)};
endforall
forall g ∈ U

forall j ∈ agent(g)
if δ−u (j) ∩ agent(g) = δ−

u (j) then
forall c ∈ Cagent(g) u

g
j (c) := pick(c, u)

else
forall c ∈ Cagent(g) u

g
j (c) := e

endif
endforall

U ′ = U ′ ∪ {〈agent(g), ug〉};
endforall
return U ′;

Fig. 2. Normal Form Algorithm for a Game Node

23



a1 a2 a3 a4 u1 u2 u3 u4

.f. .f. .f. .f. 0 0 1 1

.f. .f. .f. .t. 0 0 1 0

.f. .f. .t. .f. 0 0 0 1

.f. .f. .t. .t. 0 0 0 0

.f. .t. .f. .f. 1 2 1 0

.f. .t. .f. .t. 1 2 1 1

.f. .t. .t. .f. 1 2 0 0

.f. .t. .t. .t. 1 2 0 1

.t. .f. .f. .f. 2 1 0 1

.t. .f. .f. .t. 2 1 0 0

.t. .f. .t. .f. 2 1 1 1

.t. .f. .t. .t. 2 1 1 0

.t. .t. .f. .f. 0 0 0 0

.t. .t. .f. .t. 0 0 0 1

.t. .t. .t. .f. 0 0 1 0

.t. .t. .t. .t. 0 0 1 1

From the table describing u, we can deduce the following dependencies

a1δa3, a2δa4, a1δa2, a2δa1

According to the algorithm and from the dependence graph, we can deduce that the game
node is separated into three games nodes, each one having 2 agents. Figure 3 describes
the resulting games network. Each game node is denoted by gi,j = 〈{i, j}, u〉.

a3

g1,3 .f. .t.

.f. (e, 1) (e, 0)

.t. (e, 0) (e, 1)

a1 g1,2 .f. .t.

.f. (0, 0) (1, 2)

.t. (2, 1) (0, 0)

a2

g2,4 .f. .t.

.f. (e, 1) (e, 0)

.t. (e, 0) (e, 1)

a4

Games network

a1 a2

a3 a4

Dependence graph

Fig. 3. Normal form of the games network of example 9

6 Discussion

The inherent constraints in the equilibria and the reorganization of the games networks
underline phenomena which cannot be emphasized by the game theory. They show the
potential limitation of the observations due to the process of the coupling.
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For instance, if we consider the following game (figure 4), we first see that it cannot
be the consequence of a separation of a strategic game (because of the dependences).
However it may be joined while preserving equilibria, if we consider a chosen instance
of the join (max for the example). In this case, we remark that we cannot distinguish
the role of a1 from that of a3 when they interact with a2 because both interactions are
merged (mathematically by

∨max operation). In the games network, some combinations of
strategies are not allowed. For example, if a1 = .f. and a2 = .f. we cannot have a3 = .f.

because u
g1,2

2 (.f., .f.) = 1 and u
g2,3

2 (.f., .f.) = 0, which is incompatible. But, in the merged
game, all the combinations are allowed, resulting in differences on some payoff functions.
Thus, in the games network u2 = 1 iff ¬a2 ∧ (¬a1 ∧ a3) is true; whereas in the join game
u2 = 1 iff ¬a2 ∧ (¬a1 ∨ a3) is true.

Relating to system modeling, the games networks show how degrees of freedom of a
system, symbolized by the Nash equilibria, are reduced by the coupling between modules.
It emphasizes the problem involved in analysis of an individual sub-system when observed
phenomena disappear once they are plunged into the whole system. In the genetic network
analysis, the term “nonfunctional” describes this kind of situations [19]. The theory of the
games networks proposes an explanation to this non-functionality by the reduction of
equilibria due to the coupling of the games.

a1

g1,2 .f. .t.

.f. (1, 1) (0, 0)

.t. (0, 0) (1, 0)

a2

g2,3 .f. .t.

.f. (0, 0) (1, 1)

.t. (0, 0) (0, 0)

a3

Games network

a1 a2 a3 u1 u2 u3

.f. .f. .f. 1 1 0

.f. .f. .t. 1 1 1

.f. .t. .f. 0 0 0

.f. .t. .t. 0 0 0

.t. .f. .f. 0 0 0

.t. .f. .t. 0 1 1

.t. .t. .f. 1 0 0

.t. .t. .t. 1 0 0

g1,2

∨max
g2,3

a1

a2

a3

Dependence graph

Fig. 4. Example

7 Conclusion

In this article, we proposed an extension of the game theory, named theory of the games
networks, which provides a framework to model modular interactions. It accounts for the
phenomenon of coordination between agents in front of localized modular interactions.
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This phenomenon and its consequences are not emphasized by the games theory because
the payoff function is determined by considering all the strategies. Hence, the concept of
modular interaction is not explicitly represented.

Concerning the calculation of equilibrium, this extension puts forward two categories
of constraints: functional constraints, based on the games nodes, which underline the
Nash equilibria; and structural constraints, based on the interconnection of the agents to
different games and on the single play rule in strategic games, which results in finding
strategies compatible with the equilibria of a given set of games nodes.

Within this framework, we endeavored to define the conditions which make it possible
to establish structural equivalences between the games networks, equivalences based on
the conservation of equilibria. These conditions show the importance of the observer (rep-
resented by the function ω). To a certain extent, the reorganization is comparable from the
standpoint of an observer on the modelled system. To gain in independence with respect
to an observer, we proposed a method which does not consider a particular function, but
a class of functions. From it, we deduced an algorithm to reorganize networks. The auto-
matic reorganization as much as possible subdivides the nodes of games until obtaining a
normal form. This process is used to indicate the details of the structure leading to the
same equilibria as the initial games network (or part of this one). We have applied games
network theory to analyse the structure of biological networks which carry the regulatory
biological process [4, 6].

We have based the theory of games networks on the strategic games which are the core
of various variations of the games theory (sequential, repeated, bayesian, evolutionary).
This contributes to present the main aspects of dynamics relating to the equilibria – that is,
the formation of the total equilibria from local equilibria and the conditions of invariant
reorganizations in equilibria. A perpective for this work is to consider another kind of
models to describe games nodes. The goal is to investigate the impact of the modularity
on other aspects of the dynamics covered by the games theories.
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