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Abstract

Modelling frameworks for biological networks are used tasen on the mod-
els and their properties. One of the main problems with suckating
frameworks is to determine the dynamics of gene regulatetwaorks (GRN).
Recently, it has been observedimvivo experiments and in genomic and
transcriptomic studies, that spatial information is us&dbetter understand
both the mechanisms and the dynamics of GRN. In this paperrogope
to extend the modelling framework of R. Thomas in order toodtice such
spatial information between genes, and we will show howeliegher infor-
mations allow us to restrict the number of dynamics to caersid

Keywords. Genetic Regulatory Networks, Spatial Information, Muativ
ued Dynamics, Discrete Mathematical Modelling.

1 Introduction

To understand Genetic Regulatory Networks (GRN), modgliifameworks
and simulation techniques are often useful since the cottplaf the interac-
tions between constituents of the network (mainly genegaoidins) makes
intuitive reasoning difficult. Most of the time, parametefdhe model have
to be inferred from a set of biological experiments. Formakmods, such
as model checking or symbolic execution ([1, 12]), have h@ewed useful
to determine values of parameters leading to valid dynawiidSRN, that
is dynamics consistent with biological properties expedsgsing temporal
logic. Nevertheless, these techniques are in practicediffio manage be-
cause biological systems are either large, complex or iptewy known, re-
sulting in a huge number of parameters to consider. Henaedier to reduce
this number, it seems relevant to embed within the model sbimlegical
knowledge such as spatial relation between genes.

Recent experiments have shown that both in eukaryotes {dmacteria
[2] gene transcription occurs in discrete foci where sevRNA polymerases
(the transcribing elements) are co-localized. This suggeést genes also
tend to co-localize in space in order to optimize transwiptates. Such a
scenario is supported by genomic and transcriptomic aisdlys3]. These
have revealed that the genes which are regulated by a gigesctiption

1This work is performed within the European project GENNETETREP 34952).



factor and the gene which codes for the transcription faetad to be located
periodically along the DNA [7]. In this way, the genes can lasily co-
localized in the three-dimensional space according to ensddlal structure
of the DNA/chromatin, even in the presence of several kirffdsamscription
factors [8]. As a result, the effect of a transcription fag®enhanced due
to the spatial proximity of the targets. This phenomenoreminiscent of
the local concentration effect that has been uncovered bNekHill [13] a
decade ago. Local concentration simply means that theaittien between
molecules that are able to interact with each other is allnioee efficient
when molecules are close to each other. This straightfarwtatement is
crucial to understand genome organization because genseees to have
evolved in order to optimize the spatial proximity of reaetgroups [8, 13, 9].

In this article, we propose to include spatial informatiotoi GRN and
to study its effect upon the dynamics of the network. Our apph is based
on the discrete modelling of GRN that has been introduceddneR homas
[14]. The spatial information concerns the gene proxintigttresults from a
specific organization of DNA/chromatin. This proximity isoatelled through
two notions. The notion aflusterexpresses the notion of co-regulation, that
is a set of spatially closed genes that are expressed at the sae due
to the expression of a single regulating gene. (the presence of a single
transcription factor). The notion @irivileged interactiorbetween genes is an
ubiquitous conceptin biology; for instance, specific iat¢ions (e.g. between
a transcription factor and DNA) in contrast to non-specifiteractions, or
local concentration phenomena are examples of privilegestactions. The
use of privileged interaction is mainly based on the idetitiao interactions
lead to contradictory effects, then the privileged intémacis preferred to the
non privileged one.

This paper is an extension to multivalued dynamics of ouviptes work
in [10] on Boolean dynamics. Main results of this work areatecand we
will see that whereas it is possible, in a Boolean approactetermine con-
straints on the model of GRN to drastically reduce the nurobdynamics to
consider, this is usually not possible with a multivaluegra@ach.

The paper is structured as follows. Section 2 presents odehad GRN
including privileged interactions and clusters. In Satt we are interested
in the multivalued dynamics of classical GRN. The dynanmsogdverned by
a set of so called threshold and logical parameters, and asept how the
structure of the GRN determines the possible values of {heasaneters. Nev-
ertheless, the possible dynamics still remain too numerns so, Section 4
presents how to use privileged interactions and clustemsdice the number
of dynamics to consider. Section 5 presents a illustrathegrgle, and some
numerical simulations. Finally, Section 6 gives some cadicig remarks.

Aknowledgments: Authors want thank all the members of theoi(pe
Observabilité” from Epigenomics Project for the discossiaround distances
between genes in genetic regulatory networks..



2 GRN with Privileged Interactions and Clusters (PCGRN)

Genetic Regulatory Networks are usually represented byriented graph,
calledinteraction graph whose nodes abstract the proteins or genes which
play a role in the system and edges abstract the known itiemacof the
GRN. The model of this article is based on Multivalued GRNttis GRN
where gene have a finite set eXpression levela/hich discretise their con-
tinuous concentration in the cell (see Section 3). An irtiéoa (@ — b) can
be either an activation or an inhibition: in activation the increase of the
expression level af leads to an increase of the expression levé| tiie edge
is labelled by the sigr- anda is an activator ob; in aninhibition, the increase
of a leads to a decrease bfthe edge is labelled by the sighanda is an
inhibitor of b. To this classic representation, we add the notioprofileged
interactionsas a subset of the interactions of the GRN. The notiariusdters
defines groups of genes which are simultaneously activatethibited by a
same gene.

Definition 1 (PCGRN: GRN with privileged interactions and clusters) Age-
netic regulatory network with privileged interactions amalsteryPCGRN) is
a labelled directed graplty = (V, E, S, P, C') where

e (V. E,S) is aninteraction graphhat is

— V is afinite set whose elements are caediables
— FE CV x Visthe set ofnteractions

- S: E — {+,—} associates to each interaction ggyn (" +” for
activationand ”—" for inhibition)

e P C Fisthe set oprivileged interactions

e (' represents the clusters df, that is for each gene a partition of its
target genes: for eachin V, C(i) = {C},...,C?"} where

- UL CF = {jli e V,(4,§) € B}
—forallk, K: k# kK = CFnCY =0

Forany: € V, V(i) (resp.V*(i)) denotes the set of predecessors (resp.
successors) of, that is elements oV which have an action on(resp. on
which i has an action)V~(i) = {jlj € V,(4,7) € E}, V(i) = {jlj €
V,(i,7) € E}; P(i) denotes the set of privileged predecessors df(i) =
{ilj e V=(0), (4,9) € P}.

Definition 2 (Activators and inhibitors) Let (V, E, S, P,C) be a PCGRN,
and leti € V be a gene. We denote bly:) (resp. /(7)) the set ofactivators
(resp.inhibitors) of i: A(i) = {jlj € V~(¢),S(j,i) = +} andI(i) = {j|j €
V=(@),5(5,1) = =}



Figure 1: Example of interaction graph

In the following, a PCGRN will be represented as a graph winedes
are variables, arrows are interactions (dashed arrowséoptivileged ones)
and signs label arrows (see Fig. 3).

Example 1 (Interaction Graph) Let us exemplify Definition 1 with the toy
interaction graph (that is without any information on pitaged interactions
nor clusters) from Fig. 1 where a genés inhibited byj; andj, and activated
by k, and activates genes andk.

Section 3 will present the dynamics of classical interacgoaphs (that is
PCGRN without privileged interactions nor clusters); thiuence of privi-
leged interactions and clusters is presented in Section 4.

3 Multivalued Dynamics of Interaction Graphs

Thedynamics of an interaction graptonsists in the evolution of each gene
expression level step by step. Several dynamics can beiasgbto an
interaction graph, and the main problem is to reduce the eumidynamics
we have to consider [1]. In reality, the evolution of a giveamg'’s expression
level does not depend on all the genes of the interactionhgiayt only on
the genes which have an action on the given gene, that isetfepessors.
More precisely, not all the predecessors of a given gene &wawdfect on its
expression level, but only the predecesseith a sufficient expression level
the interaction is then said to leéfective

3.1 Threshold Function and Multivalued Dynamic States

When a gene acts on several targets, gnand k£ for example, it is often
known that the level of mandatory for an action onto be is higher than the
level necessary for the action ©dbn k. This knowledge is modelled through
the notion ofthresholds

Definition 3 (Thresholds function) LetG = (V, E, S, P,C') be a PCGRN.
A threshold functiod; : £ — N* associates to each interaction of a GRN
its thresholdthresholds parameter®; is such that such that

V(i,j) € E,T(i,j) # 1< Ik € E:T(i,k) =T(i,j) — 1

In other word, if an interaction outgoing from a variahles labelled
by a thresholdv greater than 2, then there exist interactions outgoing from



¢ labelled by1,...,a — 1. This well represents the qualitative nature of
thresholds in interaction graph, and an interactipn) will be effective if and
only if the expression level of is above the threshold dfj, 7). Obviously,
several threshold parameters can be associated to a sitgyladtion graph.

Example 2 (Threshold Functions) In Fig. 1, becauseé;, j, andk have only
one successor, then the threshold of their unique outgaiteyaction isl.
Because has two successors, there are three possible thresholdidumsc
T : (i, k) — 1,(3,72) — 2, T? : (i, k) — 2,(i,j2) — 1;andT? : (i, k) —
1, (7, jo) — 1.

In multivalued dynamiggenes can attain several levels, cabiggdression
levelswhich depend in both the interaction graph, and the assatiateshold
functions. Indeed, a gene can take as many values as thegreatgoing
threshold. The knowledge of the expression levels of allgéees define a
multivalued dynamic state

Definition 4 (Multivalued dynamic states) Let G = (V, E, S, P,C) be a
PCGRN, and letl; be an associated threshold function. We denote for
all i € Vi b, = maz{Ts(i,j)]j € V*(i)}). The set of possible level of
expression for a geneis X; (G, Tg) = {0, 1, ..., b;}.

We denotéby X (G, Ti;) the set of multivalued dynamic stateshfasso-
ciated toTy: X(G, Tg) = Hie\/ Xi(G, Tg)

Forz = (21, ...,2v|) € X(G, 1), z; is theexpression levedf genei in .

Example 3 (Multivalued dynamic states) In Fig. 1, becausej;, j, and k&

have only one successor, then they have only two expressiels.| Because
has two successors, there are three possible thresholdwpetersl™, 72 and
T3 (see example 2) leading to either two expression levels faith 7°%) or

three expression levels (wiffi' or 72).

3.2 Effective predecessors and Logical Parameters

Thedynamics of an interaction graptonsists in the evolution of each gene’s
expression level step by step. This evolution for a giveregdyes not depend
on all the genes of the PGRN, but only on the genes which haaetson on
the given gene, that is ieffective predecessors

Definition 5 (Effective predecessors)LetG = (V, E, S, P,C) be aPCGRN,
and letT; be an associated threshold function. Let V be a gene and let
r € X(G,Tg) be a dynamic state. We denote A¥(i, z) (resp. I*(i, z),
w*(i, z)) the set ofeffective activatorgresp. effective inhibitors effective
predecessoy®fi in the stater:

A, ) = {jlj € V7(0), 50, 1) = +, 25 = Ta(j, 1)}

2L et us recall thatV'| denotes the number of elements in thelget



I*<va> = {.7|.7 € V_(7'>7S(.77 Z) =y > TG(.j7 Z)}
w*(i,x) = A*(i,2) U I (i, z)

Several dynamics can be associated to a given PGRN. Theamdysare
described by a set dbgical parametersvhich associates the future expres-
sion level of a given gene according to its effective predsoes.

Definition 6 (Logical parameters) Let G = (V, E, S, P,C) be a PCGRN,
and letT; be an associated threshold function. Foe V, we denote by
K¢ 2V 0 - {0,... b} (withb; = maz{Ts(i,)|j € V*(i)}) the set of
logical parameterassociated ta, consideringl,.

For any: in V, if the system is in the dynamic state X(G, 1), theni’s
next expression level is given B§/ ¢ (w* (i, z)).

Example 4 (Logical parameters) In Fig. 1, genei has three predecessors.
Thus, there i3 logical parametersk; to consider for anyl” in T, T2 or
7% KT(0), KT ({0)), KT (L)), KFARY. KT (g2}, KT (G, k),
KT ({ja2,k}) and K ({j1, j2, k}). We also have to considéf], (0), K] ({i}),
KT (0)and K[ ({i}). Sincej; has no predecessor, it remains stable anytime.

Let us now consider a dynamic state such that 1, z;, = 0, zj, = 1
andx, = 1. Thus, because for any threshold paramet&rs T, T2 or
T3 we haveTl'(j,i) = T(j2,1) = T(k,i) = 1, we can state that evolves
toward K7 ({42, k}). The evolution of, and ¥ depends on the thresholds of
(i, jo) and (i, k). For example, if we consider the threshold function then,
becauseél™ (i, jo) = 2 andT(i, k) = 1, j»'S next expression level is given by
KjT; (0) andk’s next expression level is given B ({i}).

Determining the dynamics of an interaction graph consistheé selec-
tion of possible threshold parameters, and then the ativibwf values to
the different logical parameters. The number of the possilttributions is
huge: given a genewith at least one predecessor, there 2ite ! logical
parameterd<;, and each parameter can take at least two values. Thus, we

have to considef],., 2°" ' possible attributions. For example, just for
the interaction graph from Fig. 1, there are three possibleosthreshold
parameters, one leading 88’ x 22" x 22' = 4096 attributions for logical
parameters (if has two expressions levels), the two others leading} to<

22" % 22" = 26244 attribution (fori with three predecessors). Nevertheless,
the structure of the interaction graph restricts the pdssiblues of logical
parameters.

3.3 Valid Logical Parameters

The values of logical parameters of an interaction grapht rsasfy some
constraints, linked to the graph structure and to the tyjpretefaction. Logical
parameters respecting the following constraints are sdgvalid.



TheDefinition constrainis based on the definition of activation and inhi-
bition. If a genej which activates a genebecomes effective, then we cannot
be sure that becomes itself effective (it may be inhibited by other géniest
the expression level afcannot decrease.

Constraint 1 (Definition) LetG = (V, E, S, P,C) be a PGRN, and IeT;
be an associated set of threshold function. 4,etin V' be two genes such
thatj € V=(i). If S(j,3) = + thenVw C V—(i), K;¢(w) < K[¢(wU {5}).

If S(j,7) = — thenVw C V~(4), K¢ (w) > K'¢(w U {j}).

The Observation constraingxpresses how we identify that a predecessor
is an activator or an inhibitor. If is an activator of,, then it exists at least
one dynamic state where the effectivenesg d¢dads to an increase of the
expression level of. In other word, at least one of the previous inequalities
is strict.

Constraint 2 (Observation) Let G = (V, E, S, P,C) be a PGRN, and let
T be an associated threshold function. kLej in V' be two genes such that
§ € V=(i). If S(j,i) = + then3w C V—(i), K¢ (w) < K[¢(w U {j}). If
S(j,i) = —thendw C V~—(i), K[ (w) > K¢ (wU {j}).

Finally, theMaximum constrainéxpresses that in a dynamic state where
all the activators of a gene are effective and simultangooshe of the in-
hibitors is effective, then the gene’s expression levelagimum. Conversely,
if none of the activators is effective, and all inhibitore athen the logical
parameter is minimum, that is equalo

Constraint 3 (Maximum) LetG = (V, E, S, P,C) be a PGRN, and leT;
be an associated threshold function. Leét V' be a gene. By denoting =
maz{Tg(i,)|(i,j) € E}, we have:K ¢ (A(i)) = b;, and K¢ (I(i)) = 0.

Example 5 (Valid parameters) Let us consider the interaction graph from
Fig. 1. The considerations are done for any threshold fuomci in 7, 72 or
T3. The Maximum constraintimposes thét ({k}) = 1 and K ({j1, jo}) =

0. Other relations between parameters are resumed in Figh2rgvan arrow
from a nodeK to a nodeK’ meansK > K’ (Definition constraint), and this
inequality is strict (Observation constraint) for at leaste arrow of each type
(plain, dashed or doted arrows). All three constraints tekinto account,
there are only) valid sets of parameters.

4 Toward a reduction of valid dynamics

PCGRN include two new notions within the definition of intetian graph.
Clusters help us to reduce the number of threshold functionsonsider
whereas privileged interactions reduce the number of \@djital parameters.
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Figure 2: Relation among logical parameters of the interaction lgrispm
Fig. 1 foranyZ in T, T2 or T°.

4.1 Clusters: Reduce the Number of Threshold Functions

The notion of clusters expresses the co-regulation of a fsgepes, that
is a set of spatially closed genes that are expressed at the s@me due
to the expression of a single regulating gene. (the presence of a single
transcription factor). Thus by definition, clusters allog/to reduce the set of
threshold function to consider. Indeed, if two genesdfk are influenced by
a genei, and belonged to a same clusteripthen the two interaction@, j)
and(i, k) have the same threshold.

Constraint 4 (Clusters and thresholds)Let G = (V, E, S, P,C) be a PC-
GRN. Then the threshold functioiig to consider are such that: for ailin
vV, forall k, k' in V(i)

IpeNkeCl K eCl = Ts(i, k) = Ta(i, k')

Example 6 (Clusters and thresholds)Let us consider the interaction graph
from Fig. 1. Ifj, and k belong to a same cluster @f then there is only
one threshold function to considef:® such that7™(i, j,) = T3(i, k) = 1.
Otherwise, the three possible threshold functions musbheidered.

4.2 Conflicts and Dilemma

Despite the above constraints, valid dynamics of PGRN rstiflain too nu-
merous. The different dynamics exist due to some dynamatestvhere
the three constraints do not allow us to determine uniqueegafor logical
parameters:Conflicts occur when a gene is simultaneously activated and
inhibited, Dilemmaoccur when all the activators (resp. inhibitors) of a gene
are not effective.

Definition 7 (Conflicts and dilemma) Let G = (V, E, S, P,C) be a PC-
GRN, and letl; be an associated threshold function. Let V be a gene
and letr € X(G, T;) be a dynamic state.
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Figure 3. Solving conflicts and dilemma with privileged interactson

e 1 is asituation of conflicffor genei iff A*(i,z) # (0 andI*(i,z) # 0

e 1 is asituation of dilemmdor genes iff (A*(i,x) # () and A*(i, z) #

A(@)) or (I*(i, ) # 0 and I*(i, z) # I(7))

In the following, we will focus on the determination of logiparameters.
Thus, conflicts and dilemma will refer to parameters, thaj&uw*(i, x)) is
a conflict (resp. a dilemma) if and only if is a situation of conflict (resp.
dilemma) for gené. In other words, ifw*(i, z) = w, thenK;(w) is a conflict
iff wN A(i) # 0 andw N I(i) # 0; K;(w) is a dilemma iffA(i) € w & (i)
orl(i) Z w ¢ A(i).

Note that, in this modelK; () is neither a conflict nor a dilemma, but
corresponds to the basal situation, where a gésaot activated or inhibited.

Example 7 (Conflicts and dilemma) Let us consider thg possible dynamic
states and the associated logical parameters for gefa the interaction
graph from fig. 1: K;({j1}) and K;({j2}) are dilemma;K;({j1, j2, k}) is

a conflict; K;({j1, k}), K;({j2, k}) are both conflicts and dilemmd; ({k})
and K;({j1, j=}) are neither conflict nor dilemma: the former correspond to a
situation where is fully activated and is not inhibited, the latter corresyus

to the reverse situation.

4.3 Privileged Interactions: Reduce values of Logical Para meters

By definition, privileged interactions are such that theirck is higher than
the force of non privileged interactions. Figure 3 illustsahow to solve con-
flicts and dilemma using the privileged interactions: fonttiots, if two inter-
actions occur simultaneously, then the privileged oneesgored; a dilemma
is solved if one of the present gene is a privileged one.

This idea is captured through two constraints on logicaapeaters. The
first constraint, calledirect influenceindicates that if none of privileged
activators (resp. inhibitors) is effective, and some peiyed inhibitors (resp.
activators) of the considered gene are effective, then Xpeession level
cannot be maximum (resp. minimum).



Constraint 5 (Direct influence) LetG = (V, E, S, P,C) be a PCGRN, and
let T be an associated threshold function. Let V be a gene and: €
X(G,Ts) be a dynamic state. By denotihg= max{T(i,)|(i,j) € E},
we have:

o if A*(i,x) N P(i) # G andI*(i,z) N P(i) = § then K¢ (w*(i,z)) > 0
o if I*(i,2) N P(i) # 0 and A*(i,z) N P(i) = 0 thenK[® (w*(i,z)) < b;

The second constraint, call&elative influencestates that expression lev-
els of non privileged predecessors is not important contpir¢éhe presence
or absence of privileged ones. In other words, the value ol parameter
for a set of effective genes, whose at least one is a privilggedecessor,
remains the same whatever non privileged predecessormbageffective.

Constraint 6 (Relative influence) Let G = (V, E,S, P,C) be a PCGRN,
and let7; be an associated threshold function. Let V be a gene and let
w C V(i) be a set of predecessorsiafuch thatoN P (i) # (). Letj € V~(7)
be a gene such that ¢ P(i). By denotingy, = max{T¢(i,j)|(i,j) € E},
we have:

o if K/¢(w) < b thenK/¢(wU {j}) < b,
o if K/9(w) > 0thenK¢(wU {j}) >0

Example 8 (Influence of privileged interactions) Let us suppose that is

the only privileged predecessor in Fig. 1. Then, as soop, as ineffective,
conflict and dilemma appears between other genes, but vhisneffective,
they are solved. The valid sets of parameters are reduced2tolf we now
suppose that is the only privileged predecessor, there is no conflict Soue
dilemma remains, which reduced the number of dynamics teidento?2. If

j1 andk are privileged predecessors, there are still conflict andmima, but
the number of dynamics to consider is to reduced. tBinally, if we suppose
that bothj; and j, are privileged predecessors, then there is neither conflict
nor dilemma, and the dynamics is unique.

In [10], we study the case of Boolean dynamics, that is intéya graphs
where genes have only two levels of expression. In that camgstraints
on direct or relative influences are far more restrictiventiramultivalued
approach. Indeed, for the direct influence, the statemd&(*(i,x)) >
0 is equivalent toK;(w*(i,x)) = 1 (and K;(w*(i,z)) < b; equivalent to
K;(w*(i,z)) = 0); and the formulation of relative influence beconigéw) =
K;(wU{j}). But, even if these constraints are not constructive in gival
ued approach, they reduce the number of dynamics to consideércan be
added to other systems of constraints, such as the ones wped in [11]
to search GRN with a dynamics verifying a given temporal prop



4.4 Unique Boolean Dynamics

We present here conditions to obtain, given a PCGRN, a ursguef param-
eters leading to a unique dynamics. We reduce the considigremics to
Boolean dynamics and recall the result we present in [10ghSusituation
is obtain when every threshold is equalltowhich correspond to situations
where any gene has only one cluster among its target. Fordhabn, we
do not precise the chosen threshold function in this sectibime theoreti-
cal results for any threshold function are more difficult tatain, since we
cannot control values of parameters with the constraintgikatt or relative
influence.

Obviously, if some genes have no predecessor, we cannotrdetetheir
expression levels, which in fact do not evolve along the titkhaecessary and
sufficient condition to haveo conflictis that the set of privileged predecessors
is either equal to activators or inhibitors.

Theorem 1 (No conflict) Let G = (V. E, S, P,C) be a Boolean PCGRN.
The conflict situations ofs can be solved iff for ali € V, P(i) = A(7)
or P(i) = 1(7)

Proof 1 Sufficient. Let 2 be a situation of conflict for gene A*(i,z) # 0
and I*(i,x) # (). Let us suppose thdt(i) = A(i) (the proof is similar for
P(i) = I()). Then we havd*(i,x) N P(i) = 0 and A*(i,z) N P(i) =
A*(i,x). Thus, due to the constraint of direct influenég(w*(:, z)) = 1 and
the conflict is solved.

Necessary.Let us suppose that the condition is not verified for a given
genei, thatisP(i) # A(i) and P(i) # 1(i). P(i) # A(0) iff either it exists
ke A(i)\ P(i) oritexistsj € I(i) N P(i); P(i) # I(7) iff either it exists
jh e I(i)\ P(i) oritexistsk’ € A(i) N P(q). If it existsk € A(:) \ P(¢) and
it existsj’ € I(i) \ P(i), then the situation: where the only effective genes
are k andj’ is a situation of conflict. If it exists € A(i) \ P(i) and it exists
k' € A(i) N P(i), then two cases must be considered (if) N P(i) = ()
then, with;” € I(i), the situationz where the only effective genes drand
4" is a situation of conflict; iff (i) N P(:) # 0 then, withj” € 1(i) N P(i),
the situationz where the only effective genes dreand j” is a situation of
conflict.

Nevertheless, if all privileged predecessors are inaffecthen a situation
of dilemma may occur. Dilemmas occur when two genes haviegstme
action (either activation or inhibition) are not effectisienultaneously. Thus,
a necessary and sufficient condition to haedilemmais that either there
is only one gene for a given action, or each predecessor dgéhis type of
action is a privileged predecessor of the target.

Theorem 2 (No dilemma) Let G = (V, E, S, P,C') be a Boolean PCGRN.
The dilemma situations @f can be solved iff for all € V, (A(i) C P(i) or
A(i)| = 1)and (i) C P(i) or |1(i)| = 1).
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Figure 4. Interaction graph for the mucus production systerR.ineruginosa

Proof 2 Sufficient.Let us consider the case of activation (the proof is similar
for inhibition). Obviously, if A(i)| = 1, then there is no dilemma. K(i) C
P(1), then: for allw C A(i), if w # 0 thenK;(w) = 1 due to the constraint
of direct influence; for allw, C A(7), for all w; C I(i) \ P(i), if w, #
() then K;(w, U w;) = 1, due to the constraint of relative influence; the
remaining cases correspond to situations of conflict whexth activators
and predecessors are privileged predecessois of

Necessaryl et us suppose that the condition is not verified. Let us ssgpo
we have A(i)| > 1 and A(i) Z P(i) (the proof is similar for the inhibition).
Then it exista € A(i) \ P(i), and the situation: wherea is the only effective
predecessor afis a situation of dilemma.

Theorem 3 (No conflict nor dilemma) Conflict and dilemma situations of a
Boolean PCGRNV, E, S, P, C') can be solved iff for all € V', (A(:) = P(7)
and|I(i)| = 1) or (|A(:)| = 1andI(i) = P(i))

Proof 3 The theorem is a direct consequence of theorems 1 and 2.

Under the conditions of this theorem, only one dynamicsissient with
all constraints. Obviously, these conditions are diffi¢alstate in practice.
Section 5 will nevertheless illustrate that in any case, dbesideration of
privileged interactions allows us to reduce the set of iast dynamics.

5 Influence of Clusters and Privileged Interactions on Dynam ics

5.1 From a Biological Case Study

Pseudomonas aeruginosae bacteria that secrete mucus (alginate) in lungs
affected by cystic fibrosis, but not in common environmens this mucus
increases respiratory defficiency, this phenomenon is ameajuse of mor-
tality. Details of the regulatory network associated witle tmmucus produc-
tion by Pseudomas aeruginosae described by Govan and Deretic [4] but
a simplified genetic regulatory network has been propose@imspin and
Kaufman [5], see Fig.4.

It has been observed that mucdidaeruginosacan continue to produce
mucus isolated from infected lungs. It is commonly thoudatt the mucoid
state ofP. aeruginosas due to a mutation which cancels the inhibition of gene
x. An alternative hypothesis has been made: this mucoid state@ccur by
reason of an epigenetic modificatidre. without mutation [5]. The models
compatible with this hypothesis are constructed in [1].



5.1.1 Boolean Dynamics

The logical parameters to consider d@g() and K, ({z}) for the geney
andK,(0), K,({z}), K.({y}) andK.({z,y}) for genex, which leads with-
out further consideration, t&? x 2* = 64 possible dynamics. Obviously,
this number is decreased considering the constraintsqurelyi presented.
K,(@) = 0 and K,({z}) = 1 due to the observation rule. The maximum
rule leads tok,({z}) = 1 and K, ({y}) = 0, and then the observation rule
leads to two possible dynamics: eithéf () = 1 andK,({z,y}) = 1) or
(K, (0) = 0 and K, ({z, y}) = 0).

The two possible dynamics are due to the conflict betweandy, and
then the knowledge of privileged interactions among thevaitdon of = by
itself or the inhibition ofz by y would lead to the determination of a unique
dynamics. If both the interactions are privileged ones (@nversely are
not privileged ones) then the two dynamics remain valid. h# tnhibition
is privileged and not the activation, then,(0) = 0 and K, ({z,y}) = 0.

If the activation is privileged and not the inhibition, théf,. () = 1 and

Ko({z,y}) = 1.

5.1.2 Multivalued Dynamics

Given thatx has two predecessors, apdnly one, there are three thresh-
old functions to consider. Obviously, for each dfi¢y,z) = 1. The first
threshold function is such that!(z,y) = T'(x,z) = 1, and may seems
similar to the Boolean situation, but in fact because thestramts on direct
and relative influence are not constructive in multivalupgdraach, they do
not allow us to choose between the different model. The twerstare such
that7?(z,y) = 2, T?*(x,z) = 1 andT3(z,y) = 1, T3(x, ) = 2. The known
logical parameters are given in the following table:

Ty KI” K" KT KI”
0 0] K0 0 KT (0) 0
0 1 0 0 0 0
10 2 0 KT (1) 1
1 1| K”{z,y}) O 0 1
2 0 2 1 2 1
2 1| KF({zy)) 1 | K ({zy)) 2

Because of the observation constraint, we cannot h&Ve {z, y}) = 2
andK7”(9) = 0) or (KX ({z,y}) = 0 and K7’ () = 2), which leads to seven
valid dynamics.

5.2 From Artificial PGRN

In order to estimate the reduction in number of models indumethe intro-
duction of privileged interactions, we have randomly gatest PGRN, that is



PCGRN without any cluster information. The generation ipeeterized by
three valuesn the number of geneg,the number of predecessors of a gene
andr a ratio to determine which interactions are privileged. W& fienerate
n genes; for each gene we then randomly sebeptedecessors among the
n genes, each one being a privileged predecessor with a plibbab For
each gene, we finally randomly select a maximum thresho#d ($ra random
number betweem and its number of successors), and define for each outgoing
interaction its threshold betweérand this maximum threshold, verifying that
every value betweem and the maximum threshold is selected at least one
time.

Fig. 5 presents some results on artificial PCGRN composed 6f 10,
25, 50 and 100 genes. We give one table by hypothesis on the considered
number of predecessors: the first two tables corresponduatisins where
each gene has exacfly= 2 or 3 predecessors, and the last table to a situation
where each gene has a random number of predecessors bétaeagn We
chose these rather small values for the number of predasgssiogene to fit
a realistic ratio between number of genes and number ofictiens.

For each PCGRN we evaluate the number of dynamics withoutany
straint (row namedTotal’ in each table). We then compute the number of
dynamics when all the constraints (definition, observatmaximum, direct
and relative influence) are applied, for several ratios wilpged interactions:
when there is no privileged interaction (row "0”), when on&raction out of
ten is privileged (row "1/10”), one out of five (row "1/5”), @nout of two
(row "1/2") and when all interactions are privileged oneswi’1”). Let us
note that results between row ”1” and row "0” may be largejedent, since
when all predecessors are privileged (row "1"), then theai¥eness of only
one of them allows us to solve dilemma unsolved in row "0”. #k values
in the different tables given in Fig. 5 are the result of athanietic mean over
100 tests. The column "100 genes” for the hypothesis "3 predsresper
gene” is left empty, due to the excessive required computatme.

Obviously, the number of dynamics we have to deal with is h(aje
least10'6, see row Total’), When considering the constraints of definition,
observation and maximum, the number of dynamics is alreamjfieantly
reduced (see row "0” where none of the interactions is mgeld). With
the constraints induced by the introduction of privilegetéractions (direct
and relative influence), the number of dynamics still deseeaand the best
results are obtained when half of interactions are prigtegnes (row "1/2”).
Nevertheless, let us point out that the improvement is ljledyserved even
with small information. For example, when only one intel@attout of ten is
privileged (row "1/10"). we can observe that in the thirdleglthe number of
dynamics is divided by 00 for a ten genes network, by)® for 25 genes, and
by 108 for 100 genes.

These few simulations illustrate that as soon as spatiaknmdtion is
known, the set of all possible dynamics is really restrictd@d go further
in this restriction, one can express temporal propertieshtyacterise some



Privileged Number of genes Privileged Number of genes

ratior 10 | 25 | 50 | 100 ratio r 10 | 25 | 50 | 100

0 105 [ 1075 [ 103T T 1080 0 1021 T 1051 | 1098 | —

1/10 105 | 10'4 | 10%8 | 1053 1/10 1019 | 10%® | 10%2 | —

1/5 105 | 1013 | 10%% | 1050 1/5 1019 | 102 | 107 | —

1/2 10% | 1010 | 102 | 1040 1/2 1015 | 1038 | 10%® | —

1 10% | 101 | 1022 | 1042 1 1017 | 10%* | 1095 | —

Total 1076 [ 1072 | 10%2 | 10762 Total 10 | 10199 [ 10182 | —

Each gene has = 2 predecessors Each gene has= 3 predecessors

Privileged Number of genes

ratio r 10 | 25 | 50 | 100
0 1011 11030 [ 10% | 10%2
1/10 10° | 1022 | 10%° | 107
1/5 10° | 1022 | 10%7 | 1097
1/2 108 | 1018 | 10%6 | 1057

1 100 | 1019 | 1032 | 1096
Total 1027 | 10% | 10110 | 10217

Each gene has betweérand3 predecessors

Figure 5. Number of Dynamics for Artificial PCGRN

knowledge about the behaviour of the GRN. Formal techniquest of them
based on model checking [1], have been applied to seleal dgiamics,
that is dynamics consistent with biological experimentsregsed by tempo-
ral properties. The problem is that these formal technigapglly become
intractable because dynamics associated to the GRN are ghdisé time
very numerous. Thus, from a general point of view, the set ©GRN
dynamics is all the more reduced than all biological knogkedincluding
spatial information, is taken into account.

6 Concluding Remarks

In this article we have presented a simple way to includei@gatormation
within the René Thomas’ framework of GRN. This supplempgniaforma-
tion is described as a property of interactions: an inteads privileged
when the source and target genes are known to be spatialig.clm the
framework of Boolean dynamics, values of logical paransetee weakly
constrained, leading to situations of conflicts or dilemmasre several dy-
namics are possible. With the notion of privileged inteatt, we have
determined conditions to solve some of these situations.

The spatial oriented framework we have defined is based oé Reomas’
Boolean dynamics and presents the two following advantakgiestly, since
the dynamics for our spatial framework are chosen amongsicisRené
Thomas’ Boolean dynamics associated to the underlying GRhowt priv-
ileged interaction, then our dynamics are clearly inclu@ethe usual dy-



namics of GRN. Secondly, since spatial information allowsaisolve some
conflicts and dilemmas, and thus to determine some logigainpeters, the
number of dynamics is in practice considerably reduced.

In the goal of validating our approach, we are facing to thet faat,
although spatial information seams to be central in ordeapprehend the
complexity of biological networks, experimental data aeer Indeed, avail-
able data mainly concern large GRN, which are for the momardlih at-
tainable with our approach due to the high number of paramé&deconsider.
Nevertheless our approach seems particularly adaptetk e first results
appear even with few information on spatial relation.
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