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a École Centrale Paris, MAS Laboratory, France
b Epigenomics Project, GenopoleR© and University of Evry, F-91000 Evry

Abstract

Modelling frameworks for biological networks are used to reason on the mod-
els and their properties. One of the main problems with such modelling
frameworks is to determine the dynamics of gene regulatory networks (GRN).
Recently, it has been observed inin vivo experiments and in genomic and
transcriptomic studies, that spatial information is useful to better understand
both the mechanisms and the dynamics of GRN. In this paper we propose
to extend the modelling framework of R. Thomas in order to introduce such
spatial information between genes, and we will show how these further infor-
mations allow us to restrict the number of dynamics to consider.

Keywords. Genetic Regulatory Networks, Spatial Information, Multival-
ued Dynamics, Discrete Mathematical Modelling.

1 Introduction

To understand Genetic Regulatory Networks (GRN), modelling frameworks
and simulation techniques are often useful since the complexity of the interac-
tions between constituents of the network (mainly genes andproteins) makes
intuitive reasoning difficult. Most of the time, parametersof the model have
to be inferred from a set of biological experiments. Formal methods, such
as model checking or symbolic execution ([1, 12]), have beenproved useful
to determine values of parameters leading to valid dynamicsof GRN, that
is dynamics consistent with biological properties expressed using temporal
logic. Nevertheless, these techniques are in practice difficult to manage be-
cause biological systems are either large, complex or incompletely known, re-
sulting in a huge number of parameters to consider. Hence, inorder to reduce
this number, it seems relevant to embed within the model somebiological
knowledge such as spatial relation between genes.

Recent experiments have shown that both in eukaryotes [6] and in bacteria
[2] gene transcription occurs in discrete foci where several RNA polymerases
(the transcribing elements) are co-localized. This suggests that genes also
tend to co-localize in space in order to optimize transcription rates. Such a
scenario is supported by genomic and transcriptomic analysis [7, 3]. These
have revealed that the genes which are regulated by a given transcription
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factor and the gene which codes for the transcription factortend to be located
periodically along the DNA [7]. In this way, the genes can be easily co-
localized in the three-dimensional space according to a solenoidal structure
of the DNA/chromatin, even in the presence of several kinds of transcription
factors [8]. As a result, the effect of a transcription factor is enhanced due
to the spatial proximity of the targets. This phenomenon is reminiscent of
the local concentration effect that has been uncovered by M¨uller-Hill [13] a
decade ago. Local concentration simply means that the interaction between
molecules that are able to interact with each other is all themore efficient
when molecules are close to each other. This straightforward statement is
crucial to understand genome organization because genomesseem to have
evolved in order to optimize the spatial proximity of reactive groups [8, 13, 9].

In this article, we propose to include spatial information into GRN and
to study its effect upon the dynamics of the network. Our approach is based
on the discrete modelling of GRN that has been introduced by René Thomas
[14]. The spatial information concerns the gene proximity that results from a
specific organization of DNA/chromatin. This proximity is modelled through
two notions. The notion ofclusterexpresses the notion of co-regulation, that
is a set of spatially closed genes that are expressed at the same time due
to the expression of a single regulating gene (i.e. the presence of a single
transcription factor). The notion ofprivileged interactionbetween genes is an
ubiquitous concept in biology; for instance, specific interactions (e.g. between
a transcription factor and DNA) in contrast to non-specific interactions, or
local concentration phenomena are examples of privileged interactions. The
use of privileged interaction is mainly based on the idea that if two interactions
lead to contradictory effects, then the privileged interaction is preferred to the
non privileged one.

This paper is an extension to multivalued dynamics of our previous work
in [10] on Boolean dynamics. Main results of this work are recall, and we
will see that whereas it is possible, in a Boolean approach, to determine con-
straints on the model of GRN to drastically reduce the numberof dynamics to
consider, this is usually not possible with a multivalued approach.

The paper is structured as follows. Section 2 presents our model of GRN
including privileged interactions and clusters. In Section 3, we are interested
in the multivalued dynamics of classical GRN. The dynamics is governed by
a set of so called threshold and logical parameters, and we present how the
structure of the GRN determines the possible values of theseparameters. Nev-
ertheless, the possible dynamics still remain too numerous, and so, Section 4
presents how to use privileged interactions and clusters toreduce the number
of dynamics to consider. Section 5 presents a illustrative example, and some
numerical simulations. Finally, Section 6 gives some concluding remarks.

Aknowledgments: Authors want thank all the members of the ”Groupe
Observabilité” from Epigenomics Project for the discussions around distances
between genes in genetic regulatory networks..



2 GRN with Privileged Interactions and Clusters (PCGRN)

Genetic Regulatory Networks are usually represented by an oriented graph,
called interaction graph, whose nodes abstract the proteins or genes which
play a role in the system and edges abstract the known interactions of the
GRN. The model of this article is based on Multivalued GRN, that is GRN
where gene have a finite set ofexpression levelswhich discretise their con-
tinuous concentration in the cell (see Section 3). An interaction (a → b) can
be either an activation or an inhibition: in anactivation, the increase of the
expression level ofa leads to an increase of the expression level ofb, the edge
is labelled by the sign+ anda is an activator ofb; in aninhibition, the increase
of a leads to a decrease ofb, the edge is labelled by the sign− anda is an
inhibitor of b. To this classic representation, we add the notion ofprivileged
interactionsas a subset of the interactions of the GRN. The notion ofclusters
defines groups of genes which are simultaneously activated or inhibited by a
same gene.

Definition 1 (PCGRN: GRN with privileged interactions and clusters) Age-
netic regulatory network with privileged interactions andclusters(PCGRN) is
a labelled directed graphG = (V, E, S, P, C) where

• (V, E, S) is an interaction graphthat is

– V is a finite set whose elements are calledvariables

– E ⊆ V × V is the set ofinteractions

– S : E → {+,−} associates to each interaction itssign(” +” for
activationand ”−” for inhibition)

• P ⊆ E is the set ofprivileged interactions

• C represents the clusters ofG, that is for each gene a partition of its
target genes: for eachi in V , C(i) = {C1

i , . . . , C
pi

i } where

– ∪pi

k=1C
k
i = {j|j ∈ V, (i, j) ∈ E}

– for all k, k′: k 6= k′ ⇒ Ck
i ∩ Ck′

i = ∅

For anyi ∈ V , V −(i) (resp.V +(i)) denotes the set of predecessors (resp.
successors) ofi, that is elements ofV which have an action oni (resp. on
which i has an action):V −(i) = {j|j ∈ V, (j, i) ∈ E}, V +(i) = {j|j ∈
V, (i, j) ∈ E}; P (i) denotes the set of privileged predecessors ofi: P (i) =
{j|j ∈ V −(i), (j, i) ∈ P}.

Definition 2 (Activators and inhibitors) Let (V, E, S, P, C) be a PCGRN,
and leti ∈ V be a gene. We denote byA(i) (resp. I(i)) the set ofactivators
(resp. inhibitors) of i: A(i) = {j|j ∈ V −(i), S(j, i) = +} andI(i) = {j|j ∈
V −(i), S(j, i) = −}.
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Figure 1: Example of interaction graph

In the following, a PCGRN will be represented as a graph wherenodes
are variables, arrows are interactions (dashed arrows for the privileged ones)
and signs label arrows (see Fig. 3).

Example 1 (Interaction Graph) Let us exemplify Definition 1 with the toy
interaction graph (that is without any information on privileged interactions
nor clusters) from Fig. 1 where a genei is inhibited byj1 andj2 and activated
byk, and activates genesj1 andk.

Section 3 will present the dynamics of classical interaction graphs (that is
PCGRN without privileged interactions nor clusters); the influence of privi-
leged interactions and clusters is presented in Section 4.

3 Multivalued Dynamics of Interaction Graphs

Thedynamics of an interaction graphconsists in the evolution of each gene
expression level step by step. Several dynamics can be associated to an
interaction graph, and the main problem is to reduce the number of dynamics
we have to consider [1]. In reality, the evolution of a given gene’s expression
level does not depend on all the genes of the interaction graph, but only on
the genes which have an action on the given gene, that is its predecessors.
More precisely, not all the predecessors of a given gene havean effect on its
expression level, but only the predecessorswith a sufficient expression level,
the interaction is then said to beeffective.

3.1 Threshold Function and Multivalued Dynamic States

When a genei acts on several targets, onj andk for example, it is often
known that the level ofi mandatory for an action onj to be is higher than the
level necessary for the action ofi onk. This knowledge is modelled through
the notion ofthresholds.

Definition 3 (Thresholds function) Let G = (V, E, S, P, C) be a PCGRN.
A threshold functionTG : E → N

∗ associates to each interaction of a GRN
its thresholdthresholds parameters. TG is such that such that

∀(i, j) ∈ E, T (i, j) 6= 1 ⇔ ∃k ∈ E : T (i, k) = T (i, j) − 1

In other word, if an interaction outgoing from a variablei is labelled
by a thresholdα greater than 2, then there exist interactions outgoing from



i labelled by1, . . . , α − 1. This well represents the qualitative nature of
thresholds in interaction graph, and an interaction(j, i) will be effective if and
only if the expression level ofj is above the threshold of(j, i). Obviously,
several threshold parameters can be associated to a single interaction graph.

Example 2 (Threshold Functions) In Fig. 1, becausej1, j2 andk have only
one successor, then the threshold of their unique outgoing interaction is1.
Becausei has two successors, there are three possible threshold functions:
T 1 : (i, k) 7→ 1, (i, j2) 7→ 2; T 2 : (i, k) 7→ 2, (i, j2) 7→ 1; and T 3 : (i, k) 7→
1, (i, j2) 7→ 1.

In multivalued dynamics, genes can attain several levels, calledexpression
levelswhich depend in both the interaction graph, and the associated threshold
functions. Indeed, a gene can take as many values as the greatest outgoing
threshold. The knowledge of the expression levels of all thegenes define a
multivalued dynamic state.

Definition 4 (Multivalued dynamic states) Let G = (V, E, S, P, C) be a
PCGRN, and letTG be an associated threshold function. We denote for
all i ∈ V : bi = max{TG(i, j)|j ∈ V +(i)}). The set of possible level of
expression for a genei is Xi(G, TG) = {0, 1, ..., bi}.

We denote2 byX(G, TG) the set of multivalued dynamic states ofG, asso-
ciated toTG: X(G, TG) =

∏
i∈V Xi(G, TG).

For x = (x1, ..., x|V |) ∈ X(G, TG), xi is theexpression levelof genei in x.

Example 3 (Multivalued dynamic states) In Fig. 1, becausej1, j2 and k

have only one successor, then they have only two expression levels. Becausei
has two successors, there are three possible threshold parametersT 1, T 2 and
T 3 (see example 2) leading to either two expression levels fori (with T 3) or
three expression levels (withT 1 or T 2).

3.2 Effective predecessors and Logical Parameters

Thedynamics of an interaction graphconsists in the evolution of each gene’s
expression level step by step. This evolution for a given gene does not depend
on all the genes of the PGRN, but only on the genes which have anaction on
the given gene, that is itseffective predecessors.

Definition 5 (Effective predecessors)LetG = (V, E, S, P, C) be a PCGRN,
and letTG be an associated threshold function. Leti ∈ V be a gene and let
x ∈ X(G, TG) be a dynamic state. We denote byA∗(i, x) (resp. I∗(i, x),
w∗(i, x)) the set ofeffective activators(resp. effective inhibitors, effective
predecessors) of i in the statex:

A∗(i, x) = {j|j ∈ V −(i), S(j, i) = +, xj ≥ TG(j, i)}

2Let us recall that|V | denotes the number of elements in the setV .



I∗(i, x) = {j|j ∈ V −(i), S(j, i) = −, xj ≥ TG(j, i)}

w∗(i, x) = A∗(i, x) ∪ I∗(i, x)

Several dynamics can be associated to a given PGRN. These dynamics are
described by a set oflogical parameterswhich associates the future expres-
sion level of a given gene according to its effective predecessors.

Definition 6 (Logical parameters) Let G = (V, E, S, P, C) be a PCGRN,
and letTG be an associated threshold function. Fori ∈ V , we denote by
KTG

i : 2V −(i) → {0, . . . , bi} (with bi = max{TG(i, j)|j ∈ V +(i)}) the set of
logical parametersassociated toi, consideringTG.

For anyi in V, if the system is in the dynamic statex ∈ X(G, TG), theni’s
next expression level is given byKTG

i (w∗(i, x)).

Example 4 (Logical parameters) In Fig. 1, genei has three predecessors.
Thus, there is8 logical parametersKi to consider for anyT in T 1, T 2 or
T 3: KT

i (∅), KT
i ({j1}), KT

i ({j2}), KT
i ({k}), KT

i ({j1, j2}), KT
i ({j1, k}),

KT
i ({j2, k}) andKT

i ({j1, j2, k}). We also have to considerKT
j2(∅), K

T
j2({i}),

KT
k (∅) andKT

k ({i}). Sincej1 has no predecessor, it remains stable anytime.
Let us now consider a dynamic state such thatxi = 1, xj1 = 0, xj2 = 1

and xk = 1. Thus, because for any threshold parametersT in T 1, T 2 or
T 3 we haveT (j1, i) = T (j2, i) = T (k, i) = 1, we can state thati evolves
towardKT

i ({j2, k}). The evolution ofj2 andk depends on the thresholds of
(i, j2) and(i, k). For example, if we consider the threshold functionT 1, then,
becauseT 1(i, j2) = 2 andT 1(i, k) = 1, j2’s next expression level is given by
KT 1

j2 (∅) andk’s next expression level is given byKT 1

i ({i}).

Determining the dynamics of an interaction graph consists in the selec-
tion of possible threshold parameters, and then the attribution of values to
the different logical parameters. The number of the possible attributions is
huge: given a genei with at least one predecessor, there are2|V

−(i)| logical
parametersKi, and each parameter can take at least two values. Thus, we

have to consider
∏

i∈V 22|V
−(i)|

possible attributions. For example, just for
the interaction graph from Fig. 1, there are three possible set of threshold
parameters, one leading to223

× 221
× 221

= 4096 attributions for logical
parameters (ifi has two expressions levels), the two others leading to323

×
221

× 221
= 26244 attribution (fori with three predecessors). Nevertheless,

the structure of the interaction graph restricts the possible values of logical
parameters.

3.3 Valid Logical Parameters

The values of logical parameters of an interaction graph must satisfy some
constraints, linked to the graph structure and to the type ofinteraction. Logical
parameters respecting the following constraints are said to bevalid.



TheDefinition constraintis based on the definition of activation and inhi-
bition. If a genej which activates a genei becomes effective, then we cannot
be sure thati becomes itself effective (it may be inhibited by other genes), but
the expression level ofi cannot decrease.

Constraint 1 (Definition) Let G = (V, E, S, P, C) be a PGRN, and letTG

be an associated set of threshold function. Leti, j in V be two genes such
that j ∈ V −(i). If S(j, i) = + then∀ω ⊆ V −(i), KTG

i (ω) ≤ KTG

i (ω ∪ {j}).
If S(j, i) = − then∀ω ⊆ V −(i), KTG

i (ω) ≥ K
TG

i (ω ∪ {j}).

TheObservation constraintexpresses how we identify that a predecessor
is an activator or an inhibitor. Ifj is an activator ofi, then it exists at least
one dynamic state where the effectiveness ofj leads to an increase of the
expression level ofi. In other word, at least one of the previous inequalities
is strict.

Constraint 2 (Observation) Let G = (V, E, S, P, C) be a PGRN, and let
TG be an associated threshold function. Leti, j in V be two genes such that
j ∈ V −(i). If S(j, i) = + then∃ω ⊆ V −(i), KTG

i (ω) < KTG

i (ω ∪ {j}). If
S(j, i) = − then∃ω ⊆ V −(i), KTG

i (ω) > KTG

i (ω ∪ {j}).

Finally, theMaximum constraintexpresses that in a dynamic state where
all the activators of a gene are effective and simultaneously none of the in-
hibitors is effective, then the gene’s expression level is maximum. Conversely,
if none of the activators is effective, and all inhibitors are, then the logical
parameter is minimum, that is equal to0.

Constraint 3 (Maximum) Let G = (V, E, S, P, C) be a PGRN, and letTG

be an associated threshold function. Leti in V be a gene. By denotingbi =
max{TG(i, j)|(i, j) ∈ E}, we have:KTG

i (A(i)) = bi, andK
TG

i (I(i)) = 0.

Example 5 (Valid parameters) Let us consider the interaction graph from
Fig. 1. The considerations are done for any threshold functionT in T 1, T 2 or
T 3. The Maximum constraint imposes thatKT

i ({k}) = 1 andKT
i ({j1, j2}) =

0. Other relations between parameters are resumed in Fig. 2, where an arrow
from a nodeK to a nodeK ′ meansK ≥ K ′ (Definition constraint), and this
inequality is strict (Observation constraint) for at leastone arrow of each type
(plain, dashed or doted arrows). All three constraints taking into account,
there are only9 valid sets of parameters.

4 Toward a reduction of valid dynamics

PCGRN include two new notions within the definition of interaction graph.
Clusters help us to reduce the number of threshold functionsto consider
whereas privileged interactions reduce the number of validlogical parameters.
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KT
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Figure 2: Relation among logical parameters of the interaction graph from
Fig. 1 for anyT in T 1, T 2 or T 3.

4.1 Clusters: Reduce the Number of Threshold Functions

The notion of clusters expresses the co-regulation of a set of genes, that
is a set of spatially closed genes that are expressed at the same time due
to the expression of a single regulating gene (i.e. the presence of a single
transcription factor). Thus by definition, clusters allow us to reduce the set of
threshold function to consider. Indeed, if two genesj andk are influenced by
a genei, and belonged to a same cluster ofi, then the two interactions(i, j)
and(i, k) have the same threshold.

Constraint 4 (Clusters and thresholds) Let G = (V, E, S, P, C) be a PC-
GRN. Then the threshold functionsTG to consider are such that: for alli in
V , for all k, k′ in V +(i)

∃p ∈ N, k ∈ C
p
i , k

′ ∈ C
p
i ⇒ TG(i, k) = TG(i, k′)

Example 6 (Clusters and thresholds)Let us consider the interaction graph
from Fig. 1. If j2 and k belong to a same cluster ofi, then there is only
one threshold function to consider:T 3 such thatT 3(i, j2) = T 3(i, k) = 1.
Otherwise, the three possible threshold functions must be considered.

4.2 Conflicts and Dilemma

Despite the above constraints, valid dynamics of PGRN stillremain too nu-
merous. The different dynamics exist due to some dynamics states where
the three constraints do not allow us to determine unique values for logical
parameters:Conflicts occur when a gene is simultaneously activated and
inhibited,Dilemmaoccur when all the activators (resp. inhibitors) of a gene
are not effective.

Definition 7 (Conflicts and dilemma) Let G = (V, E, S, P, C) be a PC-
GRN, and letTG be an associated threshold function. Leti ∈ V be a gene
and letx ∈ X(G, TG) be a dynamic state.
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Figure 3: Solving conflicts and dilemma with privileged interactions

• x is a situation of conflictfor genei iff A∗(i, x) 6= ∅ andI∗(i, x) 6= ∅

• x is a situation of dilemmafor genei iff (A∗(i, x) 6= ∅ andA∗(i, x) 6=
A(i)) or (I∗(i, x) 6= ∅ andI∗(i, x) 6= I(i))

In the following, we will focus on the determination of logical parameters.
Thus, conflicts and dilemma will refer to parameters, that isKi(w

∗(i, x)) is
a conflict (resp. a dilemma) if and only ifx is a situation of conflict (resp.
dilemma) for genei. In other words, ifw∗(i, x) = ω, thenKi(ω) is a conflict
iff ω ∩ A(i) 6= ∅ andω ∩ I(i) 6= ∅; Ki(ω) is a dilemma iffA(i) 6⊆ ω 6⊆ I(i)
or I(i) 6⊆ ω 6⊆ A(i).

Note that, in this model,Ki(∅) is neither a conflict nor a dilemma, but
corresponds to the basal situation, where a genei is not activated or inhibited.

Example 7 (Conflicts and dilemma) Let us consider the8 possible dynamic
states and the associated logical parameters for genei for the interaction
graph from fig. 1: Ki({j1}) and Ki({j2}) are dilemma;Ki({j1, j2, k}) is
a conflict;Ki({j1, k}), Ki({j2, k}) are both conflicts and dilemma.Ki({k})
andKi({j1, j2}) are neither conflict nor dilemma: the former correspond to a
situation wherei is fully activated and is not inhibited, the latter corresponds
to the reverse situation.

4.3 Privileged Interactions: Reduce values of Logical Para meters

By definition, privileged interactions are such that their force is higher than
the force of non privileged interactions. Figure 3 illustrates how to solve con-
flicts and dilemma using the privileged interactions: for conflicts, if two inter-
actions occur simultaneously, then the privileged one is preferred; a dilemma
is solved if one of the present gene is a privileged one.

This idea is captured through two constraints on logical parameters. The
first constraint, calledDirect influenceindicates that if none of privileged
activators (resp. inhibitors) is effective, and some privileged inhibitors (resp.
activators) of the considered gene are effective, then the expression level
cannot be maximum (resp. minimum).



Constraint 5 (Direct influence) Let G = (V, E, S, P, C) be a PCGRN, and
let TG be an associated threshold function. Leti ∈ V be a gene andx ∈
X(G, TG) be a dynamic state. By denotingbi = max{TG(i, j)|(i, j) ∈ E},
we have:

• if A∗(i, x) ∩ P (i) 6= ∅ andI∗(i, x) ∩ P (i) = ∅ thenKTG

i (w∗(i, x)) > 0

• if I∗(i, x)∩P (i) 6= ∅ andA∗(i, x)∩P (i) = ∅ thenK
TG

i (w∗(i, x)) < bi

The second constraint, calledRelative influence, states that expression lev-
els of non privileged predecessors is not important compared to the presence
or absence of privileged ones. In other words, the value of a logical parameter
for a set of effective genes, whose at least one is a privileged predecessor,
remains the same whatever non privileged predecessors becoming effective.

Constraint 6 (Relative influence) Let G = (V, E, S, P, C) be a PCGRN,
and letTG be an associated threshold function. Leti ∈ V be a gene and let
ω ⊆ V −(i) be a set of predecessors ofi such thatω∩P (i) 6= ∅. Letj ∈ V −(i)
be a gene such thatj 6∈ P (i). By denotingbi = max{TG(i, j)|(i, j) ∈ E},
we have:

• if K
TG

i (ω) < bi thenK
TG

i (ω ∪ {j}) < bi

• if KTG

i (ω) > 0 thenKTG

i (ω ∪ {j}) > 0

Example 8 (Influence of privileged interactions) Let us suppose thatj1 is
the only privileged predecessor in Fig. 1. Then, as soon asj1 is ineffective,
conflict and dilemma appears between other genes, but whenj1 is effective,
they are solved. The9 valid sets of parameters are reduced to2. If we now
suppose thatk is the only privileged predecessor, there is no conflict, butsome
dilemma remains, which reduced the number of dynamics to consider to2. If
j1 andk are privileged predecessors, there are still conflict and dilemma, but
the number of dynamics to consider is to reduced to2. Finally, if we suppose
that bothj1 andj2 are privileged predecessors, then there is neither conflict
nor dilemma, and the dynamics is unique.

In [10], we study the case of Boolean dynamics, that is interaction graphs
where genes have only two levels of expression. In that case,constraints
on direct or relative influences are far more restrictive than in multivalued
approach. Indeed, for the direct influence, the statementKi(w

∗(i, x)) >
0 is equivalent toKi(w

∗(i, x)) = 1 (and Ki(w
∗(i, x)) < bi equivalent to

Ki(w
∗(i, x)) = 0); and the formulation of relative influence becomesKi(ω) =

Ki(ω ∪ {j}). But, even if these constraints are not constructive in a multival-
ued approach, they reduce the number of dynamics to consider, and can be
added to other systems of constraints, such as the ones we developed in [11]
to search GRN with a dynamics verifying a given temporal property.



4.4 Unique Boolean Dynamics

We present here conditions to obtain, given a PCGRN, a uniqueset of param-
eters leading to a unique dynamics. We reduce the considereddynamics to
Boolean dynamics and recall the result we present in [10]. Such a situation
is obtain when every threshold is equal to1, which correspond to situations
where any gene has only one cluster among its target. For thatreason, we
do not precise the chosen threshold function in this section. The theoreti-
cal results for any threshold function are more difficult to obtain, since we
cannot control values of parameters with the constraints ondirect or relative
influence.

Obviously, if some genes have no predecessor, we cannot determine their
expression levels, which in fact do not evolve along the time. A necessary and
sufficient condition to haveno conflictis that the set of privileged predecessors
is either equal to activators or inhibitors.

Theorem 1 (No conflict) Let G = (V, E, S, P, C) be a Boolean PCGRN.
The conflict situations ofG can be solved iff for alli ∈ V , P (i) = A(i)
or P (i) = I(i)

Proof 1 Sufficient. Let x be a situation of conflict for genei: A∗(i, x) 6= ∅
and I∗(i, x) 6= ∅. Let us suppose thatP (i) = A(i) (the proof is similar for
P (i) = I(i)). Then we haveI∗(i, x) ∩ P (i) = ∅ and A∗(i, x) ∩ P (i) =
A∗(i, x). Thus, due to the constraint of direct influence,Ki(w

∗(i, x)) = 1 and
the conflict is solved.

Necessary.Let us suppose that the condition is not verified for a given
genei, that isP (i) 6= A(i) andP (i) 6= I(i). P (i) 6= A(i) iff either it exists
k ∈ A(i) \ P (i) or it existsj ∈ I(i) ∩ P (i); P (i) 6= I(i) iff either it exists
j′ ∈ I(i) \ P (i) or it existsk′ ∈ A(i) ∩ P (i). If it existsk ∈ A(i) \ P (i) and
it existsj′ ∈ I(i) \ P (i), then the situationx where the only effective genes
are k andj′ is a situation of conflict. If it existsk ∈ A(i) \ P (i) and it exists
k′ ∈ A(i) ∩ P (i), then two cases must be considered: ifI(i) ∩ P (i) = ∅
then, withj′′ ∈ I(i), the situationx where the only effective genes arek and
j′′ is a situation of conflict; ifI(i) ∩ P (i) 6= ∅ then, withj′′ ∈ I(i) ∩ P (i),
the situationx where the only effective genes arek′ and j′′ is a situation of
conflict.

Nevertheless, if all privileged predecessors are ineffective, then a situation
of dilemma may occur. Dilemmas occur when two genes having the same
action (either activation or inhibition) are not effectivesimultaneously. Thus,
a necessary and sufficient condition to haveno dilemmais that either there
is only one gene for a given action, or each predecessor having this type of
action is a privileged predecessor of the target.

Theorem 2 (No dilemma) Let G = (V, E, S, P, C) be a Boolean PCGRN.
The dilemma situations ofG can be solved iff for alli ∈ V , (A(i) ⊆ P (i) or
|A(i)| = 1) and (I(i) ⊆ P (i) or |I(i)| = 1).
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Figure 4: Interaction graph for the mucus production system inP. aeruginosa

Proof 2 Sufficient.Let us consider the case of activation (the proof is similar
for inhibition). Obviously, if|A(i)| = 1, then there is no dilemma. IfA(i) ⊆
P (i), then: for allω ⊆ A(i), if ω 6= ∅ thenKi(w) = 1 due to the constraint
of direct influence; for allωa ⊆ A(i), for all ωi ⊆ I(i) \ P (i), if ωa 6=
∅ then Ki(ωa ∪ ωi) = 1, due to the constraint of relative influence; the
remaining cases correspond to situations of conflict where both activators
and predecessors are privileged predecessors ofi.

Necessary.Let us suppose that the condition is not verified. Let us suppose
we have|A(i)| > 1 andA(i) 6⊆ P (i) (the proof is similar for the inhibition).
Then it existsa ∈ A(i)\P (i), and the situationx wherea is the only effective
predecessor ofi is a situation of dilemma.

Theorem 3 (No conflict nor dilemma) Conflict and dilemma situations of a
Boolean PCGRN(V, E, S, P, C) can be solved iff for alli ∈ V , (A(i) = P (i)
and |I(i)| = 1) or (|A(i)| = 1 andI(i) = P (i))

Proof 3 The theorem is a direct consequence of theorems 1 and 2.

Under the conditions of this theorem, only one dynamics is consistent with
all constraints. Obviously, these conditions are difficultto state in practice.
Section 5 will nevertheless illustrate that in any case, theconsideration of
privileged interactions allows us to reduce the set of consistent dynamics.

5 Influence of Clusters and Privileged Interactions on Dynam ics

5.1 From a Biological Case Study

Pseudomonas aeruginosaare bacteria that secrete mucus (alginate) in lungs
affected by cystic fibrosis, but not in common environment. As this mucus
increases respiratory defficiency, this phenomenon is a major cause of mor-
tality. Details of the regulatory network associated with the mucus produc-
tion by Pseudomas aeruginosaare described by Govan and Deretic [4] but
a simplified genetic regulatory network has been proposed byGuespin and
Kaufman [5], see Fig.4.

It has been observed that mucoidP. aeruginosacan continue to produce
mucus isolated from infected lungs. It is commonly thought that the mucoid
state ofP. aeruginosais due to a mutation which cancels the inhibition of gene
x. An alternative hypothesis has been made: this mucoid statecan occur by
reason of an epigenetic modification,i.e. without mutation [5]. The models
compatible with this hypothesis are constructed in [1].



5.1.1 Boolean Dynamics

The logical parameters to consider areKy(∅) andKy({x}) for the geney
andKx(∅), Kx({x}), Kx({y}) andKx({x, y}) for genex, which leads with-
out further consideration, to22 × 24 = 64 possible dynamics. Obviously,
this number is decreased considering the constraints previously presented.
Ky(∅) = 0 andKy({x}) = 1 due to the observation rule. The maximum
rule leads toKx({x}) = 1 andKx({y}) = 0, and then the observation rule
leads to two possible dynamics: either (Kx(∅) = 1 andKx({x, y}) = 1) or
(Kx(∅) = 0 andKx({x, y}) = 0).

The two possible dynamics are due to the conflict betweenx andy, and
then the knowledge of privileged interactions among the activation of x by
itself or the inhibition ofx by y would lead to the determination of a unique
dynamics. If both the interactions are privileged ones (or conversely are
not privileged ones) then the two dynamics remain valid. If the inhibition
is privileged and not the activation, thenKx(∅) = 0 andKx({x, y}) = 0.
If the activation is privileged and not the inhibition, thenKx(∅) = 1 and
Kx({x, y}) = 1.

5.1.2 Multivalued Dynamics

Given thatx has two predecessors, andy only one, there are three thresh-
old functions to consider. Obviously, for each oneT (y, x) = 1. The first
threshold function is such thatT 1(x, y) = T 1(x, x) = 1, and may seems
similar to the Boolean situation, but in fact because the constraints on direct
and relative influence are not constructive in multivalued approach, they do
not allow us to choose between the different model. The two others are such
thatT 2(x, y) = 2, T 2(x, x) = 1 andT 3(x, y) = 1, T 3(x, x) = 2. The known
logical parameters are given in the following table:

x y KT 2

x KT 2

y KT 3

x KT 3

y

0 0 KT 2

x (∅) 0 KT 2

x (∅) 0
0 1 0 0 0 0
1 0 2 0 KT 2

x (∅) 1
1 1 KT 2

x ({x, y}) 0 0 1
2 0 2 1 2 1
2 1 KT 2

x ({x, y}) 1 KT 2

x ({x, y}) 1

Because of the observation constraint, we cannot have (KT
x ({x, y}) = 2

andKT 2

x (∅) = 0) or (KT
x ({x, y}) = 0 andKT 2

x (∅) = 2), which leads to seven
valid dynamics.

5.2 From Artificial PGRN

In order to estimate the reduction in number of models induced by the intro-
duction of privileged interactions, we have randomly generated PGRN, that is



PCGRN without any cluster information. The generation is parameterized by
three values:n the number of genes,p the number of predecessors of a gene
andr a ratio to determine which interactions are privileged. We first generate
n genes; for each gene we then randomly selectp predecessors among the
n genes, each one being a privileged predecessor with a probability r. For
each gene, we finally randomly select a maximum threshold (that is a random
number between1 and its number of successors), and define for each outgoing
interaction its threshold between1 and this maximum threshold, verifying that
every value between1 and the maximum threshold is selected at least one
time.

Fig. 5 presents some results on artificial PCGRN composed ofn = 10,
25, 50 and100 genes. We give one table by hypothesis on the considered
number of predecessors: the first two tables correspond to situations where
each gene has exactlyp = 2 or 3 predecessors, and the last table to a situation
where each gene has a random number of predecessors between1 and3. We
chose these rather small values for the number of predecessors per gene to fit
a realistic ratio between number of genes and number of interactions.

For each PCGRN we evaluate the number of dynamics without anycon-
straint (row named ”Total” in each table). We then compute the number of
dynamics when all the constraints (definition, observation, maximum, direct
and relative influence) are applied, for several ratios of privileged interactions:
when there is no privileged interaction (row ”0”), when one interaction out of
ten is privileged (row ”1/10”), one out of five (row ”1/5”), one out of two
(row ”1/2”) and when all interactions are privileged ones (row ”1”). Let us
note that results between row ”1” and row ”0” may be largely different, since
when all predecessors are privileged (row ”1”), then the effectiveness of only
one of them allows us to solve dilemma unsolved in row ”0”. Allthe values
in the different tables given in Fig. 5 are the result of an arithmetic mean over
100 tests. The column ”100 genes” for the hypothesis ”3 predecessors per
gene” is left empty, due to the excessive required computation time.

Obviously, the number of dynamics we have to deal with is huge(at
least1016, see row ”Total”), When considering the constraints of definition,
observation and maximum, the number of dynamics is already significantly
reduced (see row ”0” where none of the interactions is privileged). With
the constraints induced by the introduction of privileged interactions (direct
and relative influence), the number of dynamics still decreases and the best
results are obtained when half of interactions are privileged ones (row ”1/2”).
Nevertheless, let us point out that the improvement is clearly observed even
with small information. For example, when only one interaction out of ten is
privileged (row ”1/10”). we can observe that in the third table, the number of
dynamics is divided by100 for a ten genes network, by108 for 25 genes, and
by 108 for 100 genes.

These few simulations illustrate that as soon as spatial information is
known, the set of all possible dynamics is really restricted. To go further
in this restriction, one can express temporal properties tocharacterise some



Privileged Number of genesn
ratio r 10 25 50 100

0 106 1015 1031 1060

1/10 105 1014 1028 1053

1/5 105 1013 1025 1050

1/2 104 1010 1021 1040

1 104 1011 .1022 1042

Total 1016 1042 1082 10162

Each gene hasp = 2 predecessors

Privileged Number of genesn
ratio r 10 25 50 100

0 1021 1051 1098 −
1/10 1019 1048 1082 −
1/5 1019 1042 1070 −
1/2 1015 1038 1048 −
1 1017 1044 .1065 −

Total 1041 10100 10182 −

Each gene hasp = 3 predecessors

Privileged Number of genesn
ratio r 10 25 50 100

0 1011 1030 1048 1082

1/10 109 1022 1039 1074

1/5 109 1022 1037 1067

1/2 108 1018 1026 1057

1 1010 1019 1032 1066

Total 1027 1063 10110 10211

Each gene has between1 and3 predecessors

Figure 5: Number of Dynamics for Artificial PCGRN

knowledge about the behaviour of the GRN. Formal techniques, most of them
based on model checking [1], have been applied to select valid dynamics,
that is dynamics consistent with biological experiments expressed by tempo-
ral properties. The problem is that these formal techniquesrapidly become
intractable because dynamics associated to the GRN are mostof the time
very numerous. Thus, from a general point of view, the set of PCGRN
dynamics is all the more reduced than all biological knowledge, including
spatial information, is taken into account.

6 Concluding Remarks

In this article we have presented a simple way to include spatial information
within the René Thomas’ framework of GRN. This supplementary informa-
tion is described as a property of interactions: an interaction is privileged
when the source and target genes are known to be spatially close. In the
framework of Boolean dynamics, values of logical parameters are weakly
constrained, leading to situations of conflicts or dilemmaswhere several dy-
namics are possible. With the notion of privileged interactions, we have
determined conditions to solve some of these situations.

The spatial oriented framework we have defined is based on René Thomas’
Boolean dynamics and presents the two following advantages. Firstly, since
the dynamics for our spatial framework are chosen among classical René
Thomas’ Boolean dynamics associated to the underlying GRN without priv-
ileged interaction, then our dynamics are clearly includedin the usual dy-



namics of GRN. Secondly, since spatial information allows us to solve some
conflicts and dilemmas, and thus to determine some logical parameters, the
number of dynamics is in practice considerably reduced.

In the goal of validating our approach, we are facing to the fact that,
although spatial information seams to be central in order toapprehend the
complexity of biological networks, experimental data are rare. Indeed, avail-
able data mainly concern large GRN, which are for the moment hardly at-
tainable with our approach due to the high number of parameters to consider.
Nevertheless our approach seems particularly adapted, since the first results
appear even with few information on spatial relation.
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