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Abstract

In this article, we present a game theory based framework, named games network, for modeling biological interactions. After
introducing the theory, we more precisely describe the methodology to model biological interactions. Then we apply it to the
plasminogen activator system (PAs) which is a signal transduction pathway involved in cancer cell migration. The games network
theory extends game theory by including the locality of interactions. Each game in a games network represents local interactions
between biological agents. The PAs system is implicated in cytoskeleton modifications via regulation of actin and microtubules,

which in turn favors cell migration. The games network model has enabled us a better understanding of the regulation involved in
the PAs system.
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1. Introduction

Systems biology consist in a global analysis to
transform large data sets, coming from high throughput
(post-)genomics, into knowledge in order to compre-
hend the complexity of living organisms. It is useless to
point out that computer based analysis is central in this
process. However, the advance in systems biology does
not merely rely on the computing power, but also on the
advance of biological computational models.

Focusing on molecular interplays, network represen-
tation is used as a privileged tool to describe and analyse
the interactions. Indeed, a network represents a wide va-
riety of regulations such as genes regulation, pathway
signaling and metabolism reactions. Beyond the static
representation of interactions described by networks, in-

formations related to the dynamics must be integrated in
order to model the interactions more in-depth. The chal-
lenge can be more precisely specified within the scope
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of graphs and interactions analysis. It partly consists in
finding a framework to model the dynamics of interac-
tions extending their static graphs representation. In this
paper, we propose an original extension of games the-
ory, to analyse the dynamics of interactions for molecular
networks.

In biology, evolutionary game theory has been widely
used to model evolution of population resulting from
Darwinian fitness (Maynard Smith, 1982; Hofbauer
and Sigmund, 1998; Nowak and Sigmund, 2004). We
use here the strategic game theory in an operating way
to express complex regulatory phenomena. The goal
is to explain the stability of phenomena coming from
regulatory process with macroscopic rules which may
identify some general features of the biological system.
However, dealing with game theory implies the descrip-
tion of combination of interaction between any agent
and, hence, the combinatorial choices (mn for n agents

with m strategies) lead to reduce the model to a few
number of agents in order to be tractable by computer.
Moreover, dealing with complexity relies also on ability
to exhibit properties of the system. In particular, we

ed.
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Definition 3 (Games network). A games network is a
C. Chettaoui et al. / Bi

nvestigate on the modularity of interactions. Games
etwork model extends the game theory by emphasizing
he locality of the interactions in the model. It enables
s to describe a network as a set of dynamical local
nteractions which might be assimilated to biological

odular interactions. The model has been applied on
realistic biological case: the PAs system implicated in

ancer cell migration (Providence and Higgins, 2004).
The paper is organized as follows: in Section 3 we give

he definition of games networks and the equilibria. In
ection 4, we explain how games network can be used

n order to model signaling pathways. Section 5 more
eeply describes the application to PAs system.

. Notations

In the paper, we use the following notations:

[a : b] = {i ∈ Z|a ≤ i ≤ b} denotes a discrete inter-
val bounded by a and b.
Let A = [1 : n], given C = {Ci}i∈A, we note CA =
×i∈ACi. Considering X ⊆ A, we note CX = ×i∈XCi

and for j ∈ A, C−j = ×i∈A−jCi.
We consider the lifted version Clift = C + {⊥} where
the element Bottom denoted by ⊥ is added to C.
Concerning the profiles or vectors, we adopt the fol-
lowing notations. Given A = [1 : n], given a pro-
file c ∈ CA of a set CA = ×i∈ACi, we note c−i =
(c1, . . . , ci−1, ci+1, . . . , cn). This excludes the ith
component of a profile. To distinguish the ith compo-
nent of the profile from the others, we note (c−i, ci) =
(c1, . . . , ci−1, ci, ci+1, . . . , cn).

. Games networks

The theory of games networks is an extension of the
ame theory. Games networks make the representation
f modular interactions possible, each one is supported
y a subset of agents. The agents involved in local inter-
ctions are participating in the same game, i.e. the same
odule. The payoffs of the agents define the interaction

ules. An agent is shared between several modules, but
ts strategies remain the same whatever the game.

In this section, we first recall some notions of game
heory. Then we address the main definitions of a games
etwork and the notion of equilibrium at the scale of
etwork (Delaplace and Manceny, 2004).
.1. Game theory

In this subsection, we summarize the main definitions
f strategic Game Theory used in this paper. They mainly

•
•
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concern the definition of the notion of strategic game
and Nash equilibrium. The reader can refer to the books
(Gibbons, 1992; Myerson, 1991; Nash, 1996; Osborne,
2003) for a complete overview of the game theory and
its applications.

3.1.1. Strategic games
Strategic game is a model of interplays where each

agent chooses its plan of action (or strategy) once and
for all, and these choices are made simultaneously. More-
over, each agent is rational and perfectly informed of the
payoff function of other agents. Thus, they aim at max-
imizing their payoffs while knowing the expectation of
other agents.

Definition 1 (Normal or strategic representation). A
strategic game Γ is a 3-uple 〈A, C, u〉 where:

A is a set of players or agents;
C = {Ci}i∈A is a set of strategy sets where each Ci

is a set of strategies available for the agent i, Ci =
{c1

i , . . . , c
mi
i };

u : A × CA 	→ R is a payoff function, ui : CA 	→
R, i ∈ A is the payoff function of the agent i.

3.1.2. Nash equilibrium
Nash Equilibrium is a central concept of the Game

Theory ((Nash, 1996)). This notion captures the steady
states of the play for a strategic game in which each agent
holds the rational expectation about the other players
behavior. A pure nash equilibrium (pne) corresponds to
a strategic profile c (or vector) where ci is the strategy
“chosen” by the player i.

Definition 2 (Pure nash equilibrium of a strategic game).
Let 〈A, C, u〉 be a strategic game, a pure nash equilib-
rium is a profile of strategies c∗ ∈ CA with the property
that: ∀i ∈ A, ∀ci ∈ Ci, ui(c∗−i, ci) ≤ ui(c∗−i, c

∗
i ).

In other words, no agent can unilaterally deviate of a
pne without decreasing its payoff.

3.2. Games networks normal form

The definition of a games network mainly consists in
defining a set of agents connected to a set of games. The
normal form of a games network is as follows:
3-uple 〈A, C,U〉 where

A is a set of agents or players.
C = {Ci}i∈A is a set of sets of strategies.
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• U = {〈A, u〉} is a set of game nodes where each A ⊆
A is a set of agents and u : A × CA 	→ R is a payoff
function.

A games network offers a synthetic representation to de-
fine the different interplays between several players. The
structure 〈A, u〉 totally determines a game played by a
subset of agents since it is useless to include the strategies
which are the same for any agent of the network.

A games network is represented by a bipartite graph
〈A,U, E〉, E ⊆ A × U where an edge (i, 〈A, u〉) is a
member of E if and only if i ∈ A. Graphically, agents
are represented by circles, and game nodes by rectan-
gles (see Fig. 1 for an illustration).

3.3. Global equilibria

The definition of a games network allows the combi-
nation of several games into a single network. This puts
the emphasis on the way that the network structure is de-
termined, because different structures can be proposed
to model the same situation. In order to compare them, it
is necessary to identify the equivalence between games
networks. The equivalence is based on the equilibria. In-
formally, two games are equivalent if their equilibria are
the same. Such a condition requires to enlarge the equi-
librium locally computed from game nodes to the whole
games network. For that reason, we equip the theory with
the restriction operator which allows us to focus on an
arbitrary sub-game. The equilibrium at the scale of the
network is named the pure games network equilibrium
(PGne).

3.3.1. Restriction

Definition 4 (Strategy profile restriction). Let A = [1 :
n] be a discrete interval representing a set of agents, let
C = {Ci}i∈A be a set of strategy sets. Given a strategy
profile c ∈ C, we define its restriction to a subset A ⊆ A,

denoted by c↓A: C × 2A 	→ Clift , as follows:

(c↓A)i =
{

ci if i ∈ A

⊥ otherwise
mes network.

We extend the restriction operator by removing bottom
elements (⊥) of the profile, but the order of the other
values is conserved in the resulting profile. We note the
composition of the removals and restriction operation as
follows: c ⇓X.

Example 1. LetA = [1 : 4] and c = (c1, c2, c3, c4). Let
A = {1, 3}, we have c↓A= (c1, ⊥, c3, ⊥) and c ⇓A=
(c1, c3).

3.3.2. Global equilibria
A games network equilibrium corresponds to a com-

patible association of local equilibria. We assume that
agents follow the single played strategy rule, that is an
agent plays the same strategy for every connected games.

Definition 5 (Pure games network equilibrium).
Let Γ = 〈A, C,U〉 be a games network, let c∗ =
(c1, . . . , cn) be a strategy profile of every agent. c∗ is
a pure games network equilibrium of a subset U ⊆ U
(noted c∗ ∈ PGneΓ (U)) iff: ∀〈A, u〉 ∈ U, c∗ ⇓A is a pure
Nash equilibrium of the game 〈A, (Ci)i∈A, u〉.

3.4. An example of games network

Let us consider Γ = 〈A, C,U〉 the games network of
Fig. 1. We have:

• A = {a1, a2, a3, a4}, the agents.
• Ci = {.F., .T.}, ∀i ∈ A, the strategies of the agents.
• U = {〈A1,2, u

1,2〉, 〈A2,3, u
2,3〉, 〈A3,4, u

3,4〉}, the
game nodes where A1,2 = {a1, a2}, A2,3 = {a2, a3},
A3,4 = {a3, a4} and the payoffs functions are shown
in Fig. 1.

To compute the PGne of Γ , let us compute the pne of
each sub-game:

pne1,2 = pne(〈A1,2, u
1,2〉) = {(.F., .T.); (.T., .F.)}.

pne2,3 = pne(〈A2,3, u
2,3〉) = {(.F., .F.); (.T., .T.)}.
pne2,3 = pne(〈A3,4, u
3,4〉) = {(.F., .T.)}.

Thus, we can compute the PGne of Γ : PGneΓ =
{(.T., .F., .F., .T.)}.
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. Methodology for biological applications

In this section we describe each component of the
ame network theory and we place them in biological
ontext. More specifically, we describe the methodology
n the context of signaling pathways.

Schematically, agents represent biological objects
hich can either be proteins, metabolites or molecules.
he network describes the structure of the interactions
etween these biological agents. The strategies represent
he characteristic states of an agent which correspond to
he relevant configurations for the studied system. The
ast parameter of games network is the payoff. It models
he dynamics of the considered interactions.

After introducing these terms we will give more de-
ails in the case of signal transduction network.

.1. Agents and network

We take a particular interest in an example of sig-
al transduction network concerning the cancerous cells
igration. In this model, agents are more specifically
olecules and complexes. The network describes the

ormation of complexes and the regulation phenomenon
hich occur in the studied signaling process.

.2. Strategies and payoff

We must consider these two parameters together be-
ause the payoff corresponds to a numerical result as-
ociated to each configuration of strategies. Thus, we
ust be able to compute the payoff for situations which

orrespond to a combination of strategies. In the model,
configuration of strategies embodies a characteristic

ituation. In this context, the computation of the pay-
ffs consists in assembling a set of experimental results,
here each one corresponds to a biological situation.
asically, according to the biological experiments, we

ound two ways to compute the payoffs : the Game Cod-
ng Function approach ( gcf) and the Monotonous Payoff
unction approach (mpf).

The gcf approach is used to encode a function in
game. In this approach, some agents correspond to

rguments and one agent corresponds to the solution of
his function.

Given a strategic game 〈A, C, u〉 and a function
: C1 × · · · × Cn−1 	→ Cn, let us consider that the nth
gent’s strategies correspond to the result of f. The pay-
ff of the game is defined according to the gcf if and
nly if:

c ∈ CA, ∀i ∈ A − {n},
Fig. 2. Complexation payoff table.

ui(c) = 0 ∧ un(c) =
{

α, si cn = f (c−n)

0, sinon
, α > 0

By using the rule, we can notice that the set of Nash
equilibria corresponds to (c−n, f (c−n)), ∀c ∈ CA, that
is the set of image by f. The gcf approach is used to
describe complex formation. Given two complexes X and
Y which interact together to form another complex Z. If
we consider that only two strategies {0, 1} exist which
respectively represent the absence and the presence of
the complexes then the function is a logical and.

We have eight configurations to consider. The pay-
off of the agent Z is α, (α > 0) when cx ∧ cy = cz. In
this case, the Nash equilibria correspond to biological
situations where the complex is formed in presence of
both reactants or absent if one of the reactants is missing.
Other situations are not Nash equilibra. The correspond-
ing payoffs are listed in Fig. 2 and Nash equilibria written
in bold.

In the mpf approach the payoff function is mono-
tonous to the measurements given by experiments and
defined in the space phase.

Given a game 〈A, C, u〉, we assume that the observed
measure can be described by a set of functionsfi : CA →
R, which defines the evolution of the observed measure
associated to the agent ai, a concentration for instance.
The payoff function fulfills the following property:

∀ai ∈ A, ∀c, c′ ∈ C2, fi(c) ≤ fi(c
′) ⇒ ui(c) ≤ ui(c

′)

The monotony is used to model the regulatory interaction
in a network. This aspect will be more detail in Section 5
devoted to the application to PAs (plasminogen activator
system).

5. Application to PAs
In this section, we model a process of signal trans-
duction implied in the migration of cancerous cells. We
want to evaluate the qualitative dynamics of the process.
Cancerous cells can migrate from a tissue to another to
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propagate the pathology. The process can be viewed as
the response to a promigratory signal. The transduction
of this signal is the model we are interested in. If we
model this process and if we can determine its dynamics,
we will be able to plan the cellular migration. In the first
part of this section we describe the cell migration process
and we introduce the mechanism of the plasminogen ac-
tivator system (PAs). Then, we apply the games network
modeling to the process.

5.1. Cellular migration and the PA system (PAs)

The cellular migration is a complex process which
can be described as a succession of stages: adhesion,
contraction, de-adhesion (Lauffenburger and Horwitz,
1996). We are interested in the PAs system which
participates in the establishement of a molecular bridge
between the cell and the extra-cellular matrix. This
bridge leads to the migration of the cell (Chazaud et
al., 2002). PAs system is composed of a protease uPA
(urokinase plasminogen activator), a receptor uPAR
(Receptor of urokinase) and a specific inhibitor PAI-1
(plasminogen activator inhibitor-1)(Providence and
Higgins, 2004). The sequence of interactions implied in
the promigratory process is as follows: PAI-1 can bind
to VN (the vitronectine, a protein of the extra cellular
matrix) which makes the activated form of PAI-1
stable. Once PAI-1 activated, it clings to a complex
formed by uPA and uPAR. The complex is internalized
by a receptor α2 M-LRP (Low-density lipoprotein
receptor-related protein) inside the cell. Then uPAR is
recycled on the front of the cell. The transduction of
PAI-1 induces the modifications of cellular morphology
and the cytoskeleton of actine necessary to the migra-

Fig. 3. Network of transd
s 87 (2007) 136–141

tion. These modifications imply the regulation of the
activation of GTPases Cdc42 and RhoA (Ridley, 2001).

5.2. Modeling with games network

In this section, we use the games network to model
PAI-1 process of transduction. According to the previ-
ous section, agents participating in the games are the
7 previously mentioned biological agents that are PAI-
1, VN, uPA, uPAR, LRP, RhoA, Cdc42. Moreover we
add 4 other agents: c1 represents the activation of PAI-
1, c2 represents the formation of a dimer uPA/uPAR, c3
represents the formation of a complex PAI-1/uPA/uPAR
and c4 represents the internalisation of the complex PAI-
1/uPA/uPAR. Strategies of the agents are partly repre-
sented in Table 1. The other agents follow this definition:
their strategies are (1) if they are present in the environ-
ment and (0) if not.

The corresponding games network is described in
Fig. 3. Games Ki, 1 ≤ i ≤ 4 correspond to a complex-
ation. Hence they follow the gcf rules. Their payoffs
are described in Fig. 2. Recall that each equilibrium
fulfills the following property: (a, b, a ∧ b). The game
R is a game of regulation of the GTPases which does
not have any influence on the network. It means that the
network is regulated by the game U where the payoff is
described in the table above.

At least, we find the biological steady states. This cor-
responds to an important part of the modeling because it
determines the different possible states that the biologi-
uction of PAI-1.

cal system is able to reach.
According to experiments, both Nash equilibria,

written in bold in Fig. 3, correspond to characteristic
biological states. The first one (0, 0) corresponds to a
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Table 1
Table of strategies

Agent Its strategies Description

PAI-1 0 No affinity for VN
In K3 1 Strong affinity for VN

PAI-1 0 Low concentration C
in 1 Medium concentration C
U 2 High concentration C

c1 0 PAI-1 is not activated
1 PAI-1 is activated by VN

c2 0 A dimer uPA/uPAR is not formed
1 The dimer is formed

c3 0 A complex PAI-1/uPA/uPAR is
not formed

1 The complex is formed

c4 0 The complex PAI-1/uPA/uPAR is
not internalized by LRP

1 The complex PAI-1/uPA/uPAR is
internalized

RhoA 0 Low expression level
1 High expression level

n
t
r
t
a
e
g
(

6

w
o

Cdc42 0 Low expression level
1 High expression level

on-migratory state and the last one (0.5, 1) corresponds
o a promigratory state. By definition, the gcfdoes not
estrict strategies of the “input” agents because whatever
he combination of their strategies, there always exists

Nash equilibrium including them. So, the global
quilibrium mainly relies on the Nash equilibria of
ame U because it selects configurations of strategies
Section 3).

. Conclusion
In this paper we have presented a theoretical frame-
ork based on game theory. It emphasizes the notion
f local interaction between agents. It has been applied
s 87 (2007) 136–141 141

to the PAs system in order to model the interactions in-
volved in the model. It appears to confirm the presence
of two characteristic states which correspond to different
physiological configurations. It is based on the assump-
tion that Nash equilibria correspond to biological steady
states. The extension of this work is to confirm the re-
lationships between Nash equilibria and steady states.
We attempt to bridge the gap between games Network
model and molecular model such as Generalized Mass
Action (Eberhard and Antonio, 2000).
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