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Abstract. In this paper we propose an original modular extension of
game theory named games network. The objective of games networks
is to provide a theoretical framework which suits to modular dynamics
resulting from different local interactions between various agents and
which enables us to describe complex system in a modular way. Games
networks describes situations where an agent can be involved in several
different games, with several different other agents, at the same time. In
particular, we focus on the determination of global equilibria, resulting
from the composition of local equilibria for each game of the network.

However, several games networks can represent the same dynamics.
We define the notion of dependence between agents, which allows us to
compute a games network normal form. This normal form emphasizes
the elementary modules which compose the games network.

Keywords: complex systems, modularity, game theory, networks, dy-
namics.

1 Introduction

Analysis of complex systems is often based on the studies of relationships be-
tween components instead of elements themselves. This puts the emphasis on
the way to analyze interactions. From modeling standpoints, networks provide
a suitable framework to describe interactions (edges) of components (vertices).
With networks, the description remains static and it is mainly focused on the
structural analysis of the properties of the system. For example, a network where
the connectivity degree follows a power law identifies robustness properties to the
“not targeted” attacks ([1, 3, 6]). Thus, the study of interacting networks within
a modeling framework is based on a parallel between structural properties of the
network (e.g. power law) and dynamical properties (e.g. robustness).

In order to improve the framework by including dynamical aspects for the
analysis of interactions, we propose to mix two formalisms: network formalism
and game theory.

Game theory has been pioneered by von Neumann and Morgenstern to define
a theoretical framework to model complex interactions between agents. It studies
how the interacting agents (or players) make their choices (or strategies) evolved
considering their interactions with other players ([13]). Applications of game
theory are larger than “Games”, and characterize complex interactions in fields
such as Biology ([8, 11]), Economy ([7, 9]) or Computer Science ([2, 12]). The
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choices players make characterize the dynamical aspects of game theory. The
notion of Nash equilibrium captures the steady states of a game.

Theory of games networks is an extension of game theory where a player can
be involved in several games simultaneously. Games networks can be viewed as a
“network of games and players” where players are connected to the games they
participate to. With games networks, we describe the interactions as a set of
modular activities where each game represents a module of interactions. We can
study how the dynamics of one game, defined by local equilibria, influences the
dynamics of the whole network, defined by global equilibria.

In order to analyze and understand interactions between components of a net-
work, we search for the elementary interactions within this network. We define
a separation algorithm which decomposes one game in its elementary modules
underlining elementary interactions. From their reduced size, elementary mod-
ules should be more comprehensible than the games of the starting network.
Moreover, elementary modules identify structures which would be impossible to
characterize if agents are separately considered.

The paper is organized as follow: section 2 presents fundamental notions of
game theory and theory of games networks; section 3 deals with research of
elementary modules and describes the separation algorithm. We conclude in
section 4.

2 Theory of Games Networks

In this section we present an original extension of game theory: the theory of
games networks. In order to ease the reading of the paper, we first briefly recall
notions of game theory; then we introduce the extension. The reader may refer
to [10] or [5] for a more complete presentation.

2.1 Game Theory

Strategic Games. Strategic game theory proposes a model of interactions where
interacting agents, the players, choose their action, their strategy, once and for all
and simultaneously. Moreover, each player is rational — it aims at maximizing its
payoff — and perfectly informed of other players’ payoffs. The formal definition
of a strategic game is as follow:

Definition 1 (Strategic game). A strategic game is a triplet 〈A, C, u〉 where:

– A is the set of players.
– C = {Ci}i∈A is a set of strategy sets; Ci = {c1

i , ..., c
mi

i } is the set of player
i’s strategies.

– u = (ui)i∈A is the payoff vector; ui : ×i∈ACi �→ R is a function which maps
a payoff for player i considering a game configuration, i.e. other players’
strategies.
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Payoff table Nash equilibria

x/y Off On

Off (1, 1) (0, 2)
On (3, 0) (−1,−1)

{(On, Off), (Off, On)}

Fig. 1. Example of a 2 × 2 strategic game

Representation by Table. 2 × 2 strategic games — 2 players with 2 strategies —
are usually used to present game theory notions. Such a game can be represented
by a table where first player’s strategies are in line, and second player’s ones in
column. Considering example from fig. 1: if player x play its Off strategy y its
On strategy, then the payoff attributed to x is 0 and 2 for player y.

Nash Equilibrium. Nash equilibrium is a central concept which captures the
steady configurations of a strategic game:

Definition 2 (Nash equilibrium). Let 〈A, C = {Ci}i∈A, u = (ui)i∈A〉 be a
strategic game. A Nash equilibrium is a game configuration c∗ ∈ ×i∈ACi such
that:

∀i ∈ A, ∀ci ∈ Ci, ui((c∗−i, ci)) ≤ ui(c∗)

with (c∗−i, ci) equivalent to the game configuration c∗ but where player i plays its
strategy ci rather than c∗i .

In a Nash equilibrium, the strategy played by player i is the best possible response
to strategies played by other players. In other words, no agent can unilaterally de-
viate from a Nash equilibrium without decreasing its payoff. Considering example
from fig. 1, 2 Nash equilibria exist: (x = Off, y = On) and (x = On, y = Off).

2.2 Games Networks

Strategic Games Networks. In game theory, all the agents are interacting to-
gether. Theory of games networks is an original framework which extends game
theory and allows a modular description of the network dynamics. Thus, play-
ers can participate to several games simultaneously. Games which composed the
games network can be seen as dynamical modules which describe the local in-
teractions between agents. The formal definition of a strategic games network is
as follow:

Definition 3 (Games network). A strategic games network is a triplet
〈A, C, U〉 where:

– A is the set of players.
– C = {Ci}i∈A is a set of strategy sets; Ci = {c1

i , ..., c
mi

i } is the set of player
i’s strategies.

– U = {〈Aj , u
j〉} is a set of games. For each game, Aj ⊆ A is the set of players

and uj = (uj
i : ×i∈Aj Ci �→ R)i∈Aj is the payoff vector.
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x y z
x/y Off On

Off (1, 1) (0, 2)
On (2, 0) (−1,−1)

y/z Off On

Off (0, 0) (1,−1)
On (−1, 1) (2, 2)

Global equilibria: {(x = On, y = Off, z = Off), (x = Off, y = On, z = On)}

Fig. 2. Example of a 3-players-2-games games network

Given a game, it is not necessary to recall the strategies available for an agent
because they are identical for all the game this agent participates to. Thus,
strategies are associated to the agent rather than to each game.

Graphical Representation. Games networks are represented by bipartite graphs
(fig. 2). In such a graph, players are represented by a circle and games by rec-
tangles. Players are connected to games they participate to.

Equilibria. Two types of dynamics emerge from the games network representa-
tion: the first one is local to each game and the second one is global to the whole
network. Thus, two notions of equilibria have been defined: local equilibria and
global equilibria. Local equilibria correspond to Nash equilibria for each game
which composed the network. Considering example from fig. 2: two local equi-
libria exist for the x/y game ((x = Off, y = On) and (x = On, y = Off)) and
two local equilibria for the y/z game ((y = Off, z = Off) and (y = On, z = On)).
Global equilibria correspond to a game configuration which define local equi-
libria for all the games of the network. Global equilibria can be computed by
a combination of local equilibria. Considering example from fig. 2: strategies
available for player y are Off or On, which corresponds to two global equilibria,
(x = On, y = Off, z = Off) and (x = Off, y = On, z = On).

3 Elementary Modules

3.1 Structure and Network Equivalence

In games networks, each game of the network is naturally identified to a module.
Thus, a games network can be seen as a composition of modules linked through
the agents. Each module defines a local dynamics and the network structure —
the way the modules are linked — defines a global dynamics. These dynamics
are observed by their steady states: local and global equilibria.

However, a same dynamics can be modeled by different structures. Consider-
ing the example from fig. 3, the one-game-three-players network, on the left, has
the same global equilibria, and the same dynamics, than the two-games network,
on the right. We say the two networks are equivalent.

Thus, we have to search for a “normal form”, that is a canonical representation
of a games networks. A games network normal form is defined as an equivalent
games network whose games involved as few players as possible. Games in a
games network normal form are called “elementary modules”.
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3.2 Algorithm

Algorithm from fig. 4 separates a game in elementary modules1. It is based on
the notion of player dependence.

Dependence. Intuitively, a player a depends on a player b if a’s payoffs are altered
by b’s strategies. Formally, dependence is defined as follow:

Definition 4 (Dependence). Let 〈A, C, u〉 be a strategic game. Let j 
= i ∈ A2

be two agents. j depends on i, denote by iδuj, if:

∃ci ∈ Ci, ∃c′i ∈ Ci, ∃c−i ∈ C−i, uj(c−i, ci) 
= uj(c−i, c
′
i)

More precisely, the algorithm refers to the notion of predecessors:

Definition 5 (Predecessors). Let 〈A, C, u〉 a strategic game. We note δ−u (j),
j ∈ A, the set of j’s predecessor:

∀j ∈ A, δ−u (j) = {i ∈ A|iδuj ∧ i 
= j}

Notions of dependence and predecessors are used to underline interactions be-
tween agents. It allows us to determine which agents have to be involved in the
same elementary module.

Payoffs. Once we have find players involved in an elementary module, payoffs
have to be attributed. Let a ∈ A be a player which participates to an elementary
module G:

– if all of a’s predecessors are in G, we can easily compute a’s payoffs, because
none of the absent players has any influence on a’s payoffs. The pick function
in the separation algorithm chooses one configuration of the starting game
where strategies for a’s predecessors are identical to their strategies from the
elementary module, and compute a’s payoffs.

– if one of a’s predecessors is not in g, then a’s payoffs are 0.

The separation is illustrated in fig. 3; fig. 4 details the algorithm.

4 Conclusion

In this paper, we presented the theory of games networks to study modularity
of interacting networks. Theory of games networks extends game theory with
the possibility to define local interactions between agents. These local interac-
tions are modeled by the different games which constitute the network, and are
observed through their local equilibria. At the scale of the whole network, lo-
cal equilibria combine to form global equilibria. The same complex dynamics
can be represented by several different games networks. We were interested in a
1 For more information, please refer to [5].
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Game (payoffs table) Normal form

x y z ux uy uz

Off Off Off 1 2 -1
Off Off On 1 2 0
Off On Off -1 0 -1
Off On On -1 0 0
On Off Off 0 0 0
On Off On 0 0 -1
On On Off 3 3 0
On On On 3 3 -1

x

y

z

x/y Off On

Off (1, 2) (0, 0)
On (−1, 0) (3, 3)

x/z Off On

Off (0,−1) (0, 2)
On (0, 0) (0,−1)

Fig. 3. A 3-players game and its normal form

function Separate(〈A, C, u〉 : a game)
U ′ := ∅; g := 0;
/*Computation of the number of games to be created */

For all i ∈ A
g := g + 1;
agent(g) := i ∪ δ−u (i) ;

EndForAll

U = [1 : g];
For all g′ ∈ [1 : g]

U := U − {g′′ ∈ U |agent(g′′) ⊂ agent(g′) ∨ (agent(g′) = agent(g′′) ∧ g′′ < g′)};
EndForAll

/*Attribution of payoffs */

For all g ∈ U
For all j ∈ agent(g)

If δ−u (j) ∩ agent(g) = δ−
u (j) Then

For all c ∈ ×i∈agent(g)Ci

ug
j (c) := pick(c, j)

EndForAll

Else

For all c ∈ ×i∈agent(g)Ci

ug
j (c) := 0

EndForAll

EndIf

EndForAll

U ′ = U ′ ∪ {〈agent(g), ug〉};
EndForAll

return 〈A, C,U ′〉;

Fig. 4. Separation algorithm

canonical representation of games networks — the normal form — where each
game involved as less agents as possible. In normal form, games are qualified as
elementary modules and connect the “more connected” agents.

Theory of games networks has been used in a real case to model a part of
the Plaminogen Activator system (PAs) which is involved in the migration of
cancer cells. The games network of PAs is composed of 10 biological agents
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(such as molecules or proteins) and 6 games. The modelisation has underlined
the central role of one player (the Plasminogen Activator Inhibitor, PAI-1), and
the existence of two global equilibria which correspond to physiological states of
the cells. These results were found in experiments. The reader may refer to [4]
to know more about PAs and its games networks modelisation.

References

1. R. Albert and A.-L. Barabasi. Statistical mechanics of complex networks. Reviews
of Modern Physics, 74:47–97, 2002.

2. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proceedings of the 38th IEEE Symposium on Foundations of Computer Science,
Florida, October 1997.

3. A. Barabasi. Linked: How Everything Is Connected to Everything Else and What
It Means. Plume, 2003.

4. C. Chettaoui, F. Delaplace, M. Manceny, and M. Malo. Games Network & Appli-
cation to PAs system. In Information Processing in Cells and Tissues (IPCAT),
2005.

5. F. Delaplace and M. Manceny. Games network. Technical Report 101-2004, Labo-
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