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ABSTRACT
In this paper, we describe a modular game theoretical framework:
the theory of games networks. Games networks extend non co-
operative game theory by allowing agents to participate to several
games simultaneously, what make possible the description of local
interactions between agents. The theory enables us to formulate
global interaction behaviors as composition of local interactions.
This puts the emphasis on the way to decompose a game (viewed as
a global structure of interactions) into a network of smaller games
(viewed as local structures of interactions). The question of de-
composition is significant for the understanding of complex sys-
tems whose dynamics is based on interactions between agents, such
as biological networks. We describe an algorithm for this decom-
position which modifies the network structure — how agents are
connected to games — while preserving its dynamics — identi-
fied by games network equilibria (Gne) which extend the notion
of Nash equilibria to games networks. Games within the decom-
posed network represent basic building blocks whose interactions
may explain how the system works.

General Terms
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1. INTRODUCTION
Game theory provides a framework to model and characterize

complex interplays in a large variety of fields such as Economics
([6, 9]), Computer Science ([1, 15]) or Biology ([8, 13]). However,
usual representation of game theory obscures locality of interac-
tions because each player is assumed to play with all the others.

Our framework extends strategic game theory to represent in-
teractions as a “network of games and players” where players are
connected to the games they participate to. Games networks aim to
analyse dynamical aspects of interactions and to model them as a
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set of modular activities. In a game networks, each game represents
a module of interactions.

Finding modules may help us to understand the behavior of a
system by decomposing it into basic building blocks. For instance,
in post-genomic analysis ([2, 16]) modular analysis of interactions
between molecular agents help to find the association between a
support (a set of interacting agents) and a biological function. Mod-
ules have the following general properties:

• Generative: each module is constitutive of a system of which
it defines a building block. From the assembly of the mod-
ules, the system is formed and acquires its properties.

• Elementary: this property refers to the atomicity of a module,
i.e. the impossibility to extract a sub-module from a module.

Games networks theory provides a framework analysis of mod-
ules based on dynamics. It describes complexity of interplays by
games which are assimilated to modules. Modular dynamics re-
lies on locality assumptions (represented by games). From the lo-
cal properties of games, e.g. local equilibria, we compute global
properties, e.g. global equilibria computed by a “composition” of
compatible local equilibria. Games networks have been used to
model biological complex systems. In [2], authors deals with the
Plasminogen Activation system (PAs). PAs is a process of signal
transduction implied in the migration of cancer cells. Two global
equilibria were found. The first one corresponds a non-migratory
state for the cell; the second one corresponds to a pro-migratory
state.

However the description may not represent a module because
the initial description may not be necessary elementary. Indeed, el-
ementary modules relies on the assumption that a module (a game)
cannot be splited into sub-modules (sub-game). Hence, we pro-
pose an algorithm to automatically decompose a game into ele-
mentary modules. The automatic decomposition emphasizes new
games structure of the former network and reveals real interactions
between players. The algorithm is based on a dependence analysis
between agents. If an agent is dependent to another one then it must
consider the decision-making of the others to compute its payoff.

The paper is structured as follows. We present related works in
section 2. The key notions of game theory and its extension, games
networks theory, are presented in sections 3 and 4. In section 5 we
developped the definition of operators which allow us to modify the
structure of a game network. In section 6 we present the notion of
dependence, and describe an algorithm which decompose a game
in its elementary modules. We conclude in section 7.



2. RELATED WORK
Research of steady states of a game, and so computation of Nash

equilibria, is certainly one of the most studied field in game the-
ory. McKelvey and McLennan note that the computation of Nash
equilibria in n-players games is much harder, in many important
ways, that the computation in 2-players games [10]. In order to re-
duce the complexity of Nash equilibria computation, some authors
have investigated “games with local interactions” where games are
no longer considered in their globality, but through the local inter-
actions between agents. Moreover, games with local interactions
allow to describe systems in a modular way and to study influence
of local modifications on the global behavior of the system.

To express locality in games, authors usually considered the no-
tion of dependence either between actions [7, 5] or agents [4].

• La Mura, in [7] introduces a new game representation, more
structured and more compact than classical representations
in game theory. Considering the strategic separabilities in
its representation, La Mura presents convergence methods to
compute Nash equilibria.

• Koller and Milch in [5] propose a representation language
for general multi-player games named Multi-Agent Influence
Diagrams. They insist on the importance of dependence re-
lationship among variables to detect structures in games and
decrease the computational cost of finding Nash equilibria.

• Kearns, Littman and Singh in [4] introduce a compact graph-
theoretic representation for multi-party game theory. Their
main result is an efficient algorithm for computing approxi-
mate Nash equilibria in one-stage games represented by trees
or sparse graphs.

Some authors are interested in spatial locality of agents. Infor-
mally, in such games, an agent can only interact with its neighbors.
See [12] for a survey of these “spatial games”.

In this paper, we focus on interactions localized to a given pro-
cess. Our games network representation, compared to La Mura’s
one, is not another game-theoretic representation but an extension
of strategic representation. The closest representation is that of
Kearns, Littman and Singh. However, in quite a some way as Koller
and Milch, we are interested in the influence of the network organi-
zation, in terms of dependences between agents. We more particu-
larly focus on the research of elementary modules which compose
a game.

3. STRATEGIC GAMES
In this section we give definitions of game theory used in the ar-

ticle. The reader may refer to the books [14] or [11] for a complete
overview of game theory and its applications.

3.1 Definition of a strategic game
Strategic game is a model of interplays where each agent chooses

its plan of action (or strategy) once and for all, and these choices
are made simultaneously. Moreover, each agent is rational and
perfectly informed of the payoff functions of other agents. Thus,
agents aim at maximizing their payoff while knowing the expecta-
tion of other agents.

Definition 1. Normal or strategic representation. A strategic
game G is a 3−tuple 〈A, C, u〉 where:

• A is a set of players or agents.

• C = {Ci}i∈A is a set of strategy sets;
Ci = {c1

i , ..., c
mi
i } represents the set of the mi strategies

available for agent i.

• u = (ui)i∈A :
∏

i∈A Ci → R|A| is a payoff function;
ui :

∏

i∈A Ci → R associates a payoff for agent i to each
game configuration c = (ci)i∈A ∈

∏

i∈A Ci.

3.2 Mixed (or randomized) strategies
Given a strategic game G = 〈A, C, u〉, a mixed-strategy for any

player i is a probability distribution over Ci. We let ∆(Ci) denote
the set of all possible mixed strategies for player i:

∆(Ci) = {(pj)j∈[1:mi] |∀j ∈ [1 : mi]

0 ≤ pj ≤ 1 ∧

mi
∑

j=1

pj = 1}

A mixed-strategy configuration σ is any vector that specifies one
mixed strategy σi ∈ ∆(Ci) for each agent i ∈ A. We let ∆(C)
denotes the set of all possible mixed-strategy configuration:

∆(C) =
∏

i∈A

∆(Ci)

For any mixed-strategy configuration σ ∈ ∆(C), let ui(σ) de-
notes the payoff for player i ∈ A:

ui(σ) =
∑

c∈Πi∈ACi

(
∏

j∈A

σj(cj))ui(c)

where σj(cj) represents the probability that agent j plays cj .

3.3 Nash equilibrium
Nash equilibrium is a central concept of game theory. This no-

tion captures the steady states of the play of a strategic game in
which each agent holds the rational expectation about the other
players behavior.

Definition 2. Nash equilibrium of a strategic game. Let G =
〈A, C, u〉 be a strategic game. We denote by Nash(G) the set of all
Nash equilibria for G:

Nash(G) = {σ∗ ∈ ∆(C) |∀i ∈ A, ∀σi ∈ ∆(Ci)

ui(σ
∗
−i, σi) ≤ ui(σ

∗
−i, σ

∗
i )}

with (σ∗
−i, σi) equivalent to σ∗ but where player i plays its strategy

σi rather than σ∗
i .

In other words, no agent can unilaterally deviate of a Nash equilib-
rium without decreasing its payoff.

4. GAMES NETWORK
In this section, we address the main definitions of a games net-

work. Games networks correspond to an extension of game theory
which defines modular interactions localized to different subsets
of agents. Each module corresponds to a specific game defined by
a payoff function. Parameters of the payoff function are strategies
of agents involved in the game. Agents are shared between differ-
ent modules and played different games in parallel. However, they
have the same set of strategies for every games they played. More-
over, we assume that agents follow the single played strategy rule:
an agent plays the same strategy for each game it is connected to.
The reader may refer to [3] for a more complete overview.



a3

u1,3 .F.3 .T.3
.F.1 (1, 2) (1, 0)
.T.1 (1, 0) (0, 1)

a1

u1,2 .F.2 .T.2
.F.1 (2, 2) (0, 0)
.T.1 (0, 0) (1, 1)

a2

u2,4 .F.4 .T.4
.F.2 (1, 0) (0, 4)
.T.2 (1, 2) (1, 0)

a4

Figure 1: A “4-agents-3-games” games networks

4.1 Definition of a games network
Definition of a games network mainly consists of defining a set

of agents connected to a set of games.

Definition 3. Games network. A games network is a 3−tuple
〈A, C,U〉 where

• A is a set of agents or players.

• C = {Ci}i∈A is a set of strategy sets.

• U = {〈Aj , u
j〉}j is a set of game nodes where each Aj ⊆ A

is a set of agents and uj = (uj
i : Πi∈Aj Ci 7→ R)i∈A is a

vector of payoff functions.

A games network offers a synthetic representation to define the
different interplays between several players. The structure 〈A, u〉
totally determines a game played by a subset of agents since it is
useless to include the strategies which are perfectly defined in C.

A games network is represented by a bipartite graph 〈A,U , E〉,
with E ⊆ A× U and where an edge (i, 〈A, u〉) is a member of E

if and only if i ∈ A (See fig. 1 for an illustration of a “4-agents-3-
games” games network).

4.2 Games network equilibrium
Games networks allow a two level description of complex sys-

tems: local interactions are combined and result in a global behav-
ior. Local steady states are identified to local equilibria, i.e. Nash
equilibria of game nodes.

Global equilibria are equilibria at the scale of the whole games
network. Such equilibria are called games network equilibria, or
Gne. A Gne corresponds to a compatible association of local equi-
libria:

Definition 4. Games network equilibrium (Gne). Considering
Γ = 〈A, C,U〉 a games network, we denote by Gne(Γ) the set of
all global equilibria for Γ:

Gne(Γ) = {σ∗ ∈ ∆(C) |∀〈Aj , u
j〉 ∈ U

p(σ∗
, Aj) ∈ Nash(〈Aj , {Ci}i∈Aj , u

j〉)}

with p(σ∗, Aj) = (σ∗
i )i∈Aj , the projection of σ∗ to a subset Aj ⊆

A of agents.

Example 1. A “4-agents-3-games” games network.
Let us consider Γ = 〈A, C,U〉 the games network of fig.1. We

have:

• A = {a1, a2, a3, a4}, the agents

• ∀i ∈ A Ci = {.F.i, .T.i}, the agents’ strategies

• U = {〈A1,3, u
1,3〉, 〈A1,2, u

1,2〉, 〈A2,4, u
2,4〉} which repre-

sents the game nodes. A1,3 = {a1, a3}, A1,2 = {a1, a2},
A2,4 = {a2, a4} and the payoff functions are shown in fig.1.

To compute the Gne of Γ, let us compute the Nash of each game
node.

Nash1,3 = Nash(〈A1,3, {C1, C3}, u
1,3〉) =

{

(

(1, 0), (1, 0)
)

;
(

(
1

3
,
2

3
), (1, 0)

)

}

Nash2,4 = Nash(〈A2,4, {C2, C4}, u
2,4〉) =

{

(

(0, 1), (1, 0)
)

;
(

(
1

3
,
2

3
), (1, 0)

)

}

Nash1,2 = Nash(〈A1,2, {C1, C2}, u
1,2〉) =

{

(

(1, 0), (1, 0)
)

;
(

(0, 1), (0, 1)
)

;
(

(
1

3
,
2

3
), (

1

3
,
2

3
)
)

}

Thus, we can compute the Gne of Γ by combining Nash equilibria
of each game node:

Gne(Γ) =
{

(

(
1

3
,
2

3
), (

1

3
,
2

3
), (1, 0), (1, 0)

)

}

Note that, in certain situations, it may be possible that no Gne ex-
ists.

5. STRUCTURAL MODIFICATIONS AND
GAMES NETWORKS EQUIVALENCE

Games networks allow the combination of several games into a
single network. This puts the emphasis on the network structure,
i.e. how agents are connected to games, because different struc-
tures can be proposed to model the same situation. To compare
these different structures we first define the notion of equivalence
between games network (section 5.1). Then we detail operators to
modify the structure (section 5.2). The use of structural operators
reveals the importance of a specific function called observer. We
deal with this notion in section 5.3.

5.1 Equivalence between games networks
The notion of equivalence is used to determine whether two net-

work structures model the same situation. Informally, the network
structure represents the statics of the networks, whereas identical
situation have the same dynamics. We consider that global equilib-
ria of a games network represent its steady states. Thus the equiva-
lence between two stuctures is based on the equality of their equi-
libria:

Definition 5. Gne equivalence. Let Γ1 = 〈A1, C1,U1〉, Γ2 =
〈A2, C2,U2〉 be two games networks such that A1 = A2, C1 =
C2. We denote by Γ1 ≡Gne Γ2 the equivalence between Γ1 and
Γ2:

Γ1 ≡Gne Γ2 ⇔ Gne(Γ1) = Gne(Γ2)

5.2 Operators for structural modifications
Operators detailled here allow us to modify the structure of a

games network. Indeed, restructuring games networks is expressed
in terms of substituting game nodes. The join operation or, con-
versely, the separation are the basic operations for games networks
reorganization. Operators for structural modifications can be ap-
plied either on games or games nodes.

5.2.1 Substitution
The substitution operator consists in replacing a set of game

nodes by another:



Definition 6. Substitution. Let Γ = 〈A, C,U〉 be a games net-
work, let U ⊆ U be a set of game nodes. Let U ′ = {〈Ak, uk〉}k

such that Ak ⊆ A, ∀k. We denote by Γ[U/U ′] the substitution of U

by U ′ in Γ:

Γ[U/U ′] = 〈A, C,U − U ∪ U
′〉

5.2.2 Join operation
The join operation consists in joining two games (or game nodes)

in a single one:

Definition 7. Join according to ω. Let G1 = 〈A1, C1, u
1〉 and

G2 = 〈A2, C2, u
2〉 be two games, let ω : R × R 7→ R be a

function. We denote by G1

∨ω
G2 the join game of G1 and G2:

G1

ω
∨

G2 = 〈A1 ∪ A2, C1 ∪ C2, u〉

with

∀c ∈ C(A1∪A2)

∀i ∈ A1 − A2 ui(c) = u
1

i

(

p(c, A1)
)

∀i ∈ A2 − A1 ui(c) = u
2

i

(

p(c, A2)
)

∀i ∈ A1 ∩ A2 ui(c) = ω
(

u
1

i

(

p(c, A1)
)

, u
2

i

(

p(c, A2)
)

)

The join operation depends on a function ω, called observer
function. For instance, the maximum function (x, y) 7→ max(x, y)
can be a candidate for giving a concrete definition of

∨ω operation.
This observer function explicits how an agent computes its global
payoff considering local payoffs from the different games it partic-
ipates to. Section 5.3 exemplifies the importance of the observer
function.

5.2.3 Separation
Separation is the reciprocal operation of the join operation. It

consists in spliting a game in a games network with two game
nodes. The separation, according to a function ω, is defined as
follows:

Definition 8. Separation according to ω. Let G be a game and
Γ be a games network. We denote by

∧ω
G = Γ the separation of

G (according to ω) into Γ:

ω
∧

〈A, C, u〉 = 〈A, C, {〈A1, u
1〉, 〈A2, u

2〉}〉 ⇔

〈A1, u
1〉

ω
∨

〈A2, u
2〉 = 〈A, u〉

By extension, we also called separation the games network which
results of successive separations.

5.3 Structural modifications and importance
of the observer

The structural modifications are dependant on a particular func-
tion ω, called observer and used in join or separation. Considering
a games networks, the resulting joint game can be very different
according to the observer we use. For example, let us consider the
games network Γ from fig. 2 which is composed of two game nodes
g1,2 and g1,3. If we use the Max function as the observer to join
g1,2 and g1,3, the resulting game is ΓM = g1,2 ∨Max

g1,3. The
payoff function of ΓM is shown in the following table.

a2

u1,2 .F.2 .T.2
.F.1 (4, 1) (0, 0)
.T.1 (0, 0) (1, 1)

a1

u1,3 .F.3 .T.3
.F.1 (0, 1) (0, 0)
.T.1 (0, 0) (1, 1)

a3

Figure 2: Γ, a small games network to instance the importance
of the observer function

a1 a2 a3 uM
1 uM

2 uM
3

.F.1 .F.2 .F.3 4 1 1

.F.1 .F.2 .T.3 4 1 0

.F.1 .T.2 .F.3 0 0 1

.F.1 .T.2 .T.3 0 0 0

.T.1 .F.2 .F.3 0 0 0

.T.1 .F.2 .T.3 0 0 1

.T.1 .T.2 .F.3 1 1 0

.T.1 .T.2 .T.3 1 1 1

If we use the min function as observer to join g1,2 and g1,3, we
obtain Γm as result game: Γm = g1,2 ∨min

g1,3. The payoff func-
tion of Γm is shown in the following table.

a1 a2 a3 um
1 um

2 um
3

.F.1 .F.2 .F.3 0 1 1

.F.1 .F.2 .T.3 0 1 0

.F.1 .T.2 .F.3 0 0 1

.F.1 .T.2 .T.3 0 0 0

.T.1 .F.2 .F.3 0 0 0

.T.1 .F.2 .T.3 0 0 1

.T.1 .T.2 .F.3 0 1 0

.T.1 .T.2 .T.3 1 1 1

With the payoff functions defined, we can compute global and
Nash equilibria.

• For the Γ games network:

Gne(Γ) =
{(

(1, 0), (1, 0), (1, 0)
)

;

(

(0, 1), (0, 1), (0, 1)
)

;
(

(
1

2
,
1

2
), (

1

5
,
4

5
), (1, 0)

)}

• For the Γm game:

Nash(Γm) =
{(

(1, 0), (1, 0), (1, 0)
)

;
(

(0, 1), (0, 1), (0, 1)
)}

• For the ΓM game:

Nash(ΓM ) ⊃ Gne(Γ) ∪
{(

(
1

2
,
1

2
), (

1

5
,
4

5
), (0, 1)

)}

Finally, we have Gne(Γm) ( Gne(Γ) ( Gne(ΓM ); and none of
the games network Γ and its two joint games ΓM and Γm has the
same equilibria. Thus, choice of the observer function is central
especially if we are interested in finding a games network with a
different structure but equivalent to the initial one.



6. ELEMENTARY MODULES
In this section, given a games network, we are interested in find-

ing an equivalent one, but with a simpler structure. More precisely,
we are looking for a normal form which is composed of the small-
est possible game nodes (in sense of number of agents involved in
game nodes). Game nodes of such a games network are called el-
ementary games or elementary modules. The normal form can be
used to obtain a better understanding of complex systems, where
elementary modules underline how agents interplay.

Normal form can be obtained using successive separations, but
figure 4 presents an algorithm which directly separates a game in
its elementary modules. Thus, in order to find a games network
normal form, we apply the separate algorithm to each game node.

Separation (as join operation) depends on a function ω (section
5.3). This function determines how payoffs of the original game
are distributed in the different separated games. In the separation
obtained with algorithm from figure 4, there exists, for each agent,
one particular game which contains the whole payoffs of this agent.
The dependence notion determines which other agents have to par-
ticipate to this particular game. Dependence underlines interactions
between agents; and intuitively, agents involved in the same ele-
mentary module are agents of the original game which are highly
interacting.

Not all ω functions are compatible with the separation presented
in figure 4. For example, addition is compatible but not the max
function. More precisely, functions with a neutral element1 are
compatible. Thus, in the separated games, each agent is involved
in two types of games: one game which contains all its payoffs,
and possibly several other games where its payoffs are the neutral
element of the separation function.

In order to rebuild the original game from the normal form, the
definition of join operation considering a function with neutral ele-
ment is changed as follows:

Definition 9. Join with neutral element. Let ω a function with
eω as neutral element. Let Γ = 〈A, C,U〉 be a games network,
let G1 = 〈A1, u

1〉 and G2 = 〈A2, u
2〉 be two game nodes of Γ

(G1 ∈ U , G2 ∈ U), we define:

G1

ω
∨

G2 = 〈A1 ∪ A2, u〉

with:

∀c ∈ C(A1∪A2),

∀i ∈ A1 − A2 ui(c) = u
1

i

(

p(c, A1)
)

∀i ∈ A2 − A1 ui(c) = u
2

i

(

p(c, A2)
)

∀i ∈ A1 ∩ A2

ui(c) =















u2
i

(

p(c, A2)
)

if u1
i

(

p(c, A1)
)

= eω

u1
i

(

p(c, A1)
)

if u2
i

(

p(c, A2)
)

= eω

u1
i

(

p(c, A1)
)

if u2
i

(

p(c, A2)
)

= u1
i

(

p(c, A1)
)

eω otherwise

Section 6.1 precises the notion of dependance used to underline
how agents are interacting. Section 6.2 explicits the separation al-
gorithm from fig 4. These two ideas are ilustrated using game from
fig. 3.

6.1 Dependence
Dependence provides an overview of the agent interplays in a

game without having carefully studying the payoff function. Infor-

1Recall that e ∈ R is a neutral element for ω : R × R → R if and
only if ∀r ∈ R ω(e, r) = ω(r, e) = r

a1 a2

a3 a4

a1 a2 a3 a4 u1 u2 u3 u4

.F.1 .F.2 .F.3 .F.4 −4 −1 2 −2

.F.1 .F.2 .F.3 .T.4 3 11 2 5

.F.1 .F.2 .T.3 .F.4 −4 −1 1 −2

.F.1 .F.2 .T.3 .T.4 3 11 1 5

.F.1 .T.2 .F.3 .F.4 −4 9 13 6

.F.1 .T.2 .F.3 .T.4 3 4 13 15

.F.1 .T.2 .T.3 .F.4 −4 9 −3 6

.F.1 .T.2 .T.3 .T.4 3 4 −3 15

.T.1 .F.2 .F.3 .F.4 7 −1 2 −2

.T.1 .F.2 .F.3 .T.4 −5 11 2 5

.T.1 .F.2 .T.3 .F.4 7 −1 1 −2

.T.1 .F.2 .T.3 .T.4 −5 11 1 5

.T.1 .T.2 .F.3 .F.4 7 9 13 6

.T.1 .T.2 .F.3 .T.4 −5 4 13 15

.T.1 .T.2 .T.3 .F.4 7 9 −3 6

.T.1 .T.2 .T.3 .T.4 −5 4 −3 15

Figure 3: A “4-agents game” to illustrate the separate algo-
rithm

mally, an agent A depends on another agent B (or B influences A)
if A’s payoffs are altered by B’s strategies.

Definition 10. Agent dependence. Let 〈A, C, u〉 be a strategic
game, let (i, j) ∈ A2, i 6= j be two agents. We denote by iδuj the
dependance relation:

iδuj ⇔ ∃(ci, c
′
i) ∈ C

2
i , ∃c−i ∈ Πk∈A−iCk

uj(c−i, ci) 6= uj(c−i, c
′
i)

Thus, with the dependence relation, we can determine all the
agents which influence a given agent:

Definition 11. Set of influent agents. Let G = 〈A, C, u〉 be a
strategic game, and j ∈ A an agent. We denote by δ−

u (j) the set of
all agents which influence j:

∀j ∈ A, δ
−
u (j) = {i ∈ A|iδuj}

Example 2. Dependences in fig. 3 game. From the payoffs we
can deduce the following dependences:

a1(.F.1, .F.2, .F.3, .F.4) 6= a1(.F.1, .F.2, .F.3, .T.4) ⇒ a4δua1

a2(.F.1, .F.2, .F.3, .F.4) 6= a2(.F.1, .F.2, .F.3, .T.4) ⇒ a4δua2

a3(.F.1, .F.2, .F.3, .F.4) 6= a2(.F.1, .T.2, .F.3, .F.4) ⇒ a2δua3

a4(.F.1, .F.2, .F.3, .F.4) 6= a2(.F.1, .T.2, .F.3, .F.4) ⇒ a2δua4

6.2 Separate a game node
Figure 4 presents the separate algorithm which computes a nor-

mal form from a game.
Let G = 〈A, C, u〉 the starting game and ω a function of sep-

aration with eω as neutral element. First, the separate function
research how many game nodes have to be created. The depen-
dence graph is used to emphasize the interactions between agents



function separate(〈A, u〉 : game)
U ′ := ∅; g := 0;

/* Compute game nodes to be created */
FORALL i ∈ A DO

g := g + 1;
agent(g) := i ∪ δ−u (i) ;

ENDFORALL
U = [1 : g];
FORALL g′ ∈ [1 : g] DO

U := U −
{

g′′ ∈ U |
(

agent(g′′) ⊂ agent(g′)
)

∨
(

agent(g′) = agent(g′′) ∧ g′′ < g′
)

}

;

ENDFORALL

/* Attribution of payoffs */
FORALL g ∈ U DO

FORALL j ∈ agent(g) DO
IF δ−u (j) ∩ agent(g) = δ−u (j) THEN

FORALL c ∈ Cagent(g) DO
u

g
j (c) := pick(c, u);

ENDFORALL
ELSE

FORALL c ∈ Cagent(g) DO
u

g
j (c) := e;

ENDFORALL
ENDIF

ENDFORALL
U ′ = U ′ ∪ {〈agent(g), ug〉};

ENDFORALL

RETURN U ′;

Figure 4: Normal Form Algorithm for a Game

and thus determine which agents participate to a same game node.
The game nodes are defined by the agents which are involved in.
For each agent, a game node which contains all its predecessors ex-
ists and, given two game nodes g1 = 〈A1, u1〉 and g2 = 〈A2, u2〉,
we cannot have A1 ⊆ A2 or A2 ⊆ A1.

Once we have the game nodes, we can compute the payoffs. Let
a ∈ A be an agent and g = 〈Ag, ug〉 be a game node to be created.

• If all the predecessors of a are in g, we can easily compute
the payoffs for a, because none of the missing agents in g

have any influence on a’s payoffs. In fact, for any game
〈A∗, C∗, u∗〉, we have:

∀σ, σ
′ ∈ ∆(C∗)

2
, ∀j ∈ A

∗

p(σ, j ∪ δ
−
u∗(j)) = p(σ′

, j ∪ δ
−
u∗(j)) ⇒ u

∗
j (σ) = u

∗
j (σ

′)

Thus, given a game configuration cg of g, each pure pro-
file cG of G, the starting game, such that the restriction of
cG ⇓Ag= cg gives the same payoffs for a. The pick function
in fig.4 chooses one of these cG configuration.

• If at least one of the agents which influences a is not in g, we
give eω , the neutral element of ω, to a as payoff.

If we consider a n-agents game, each player having p strategies,
the complexity of algorithm from fig.4 is n2pn. However, the com-
plexity is n2 if each agent depends on all the others, i.e. if the game
is elementary. The n2pn is obtained with games where agents are
not very dependent, thus in that case, the game is highly separa-
ble and the complexity of computation of mixed Nash equilibria is
highly decreased.

a1

u4,1 .F.1 .T.1
.F.4 (eω ,−4) (eω , 7)
.T.4 (eω , 3) (eω ,−5)

a4

u4,2 .F.2 .T.2
.F.4 (−2,−1) (6, 9)
.T.4 (5, 11) (15, 4)

a2

u2,3 .F.3 .T.3
.F.2 (eω , 2) (eω , 1)
.T.2 (eω , 13) (eω ,−3)

a3

Figure 5: Normal Form of fig. 3 game

Example 3. Normal Form of fig. 3 game. According to the al-
gorithm we can deduce that the game node from example 2 is sep-
arated into three game nodes, each one having 2 agents. Figure 5
describes the resulting games network.

7. CONCLUSION
In this paper we have proposed an extension of game theory,

named games networks theory, which provides a framework to mo-
del complex systems in terms of sets of interacting agents. By
contrast of game theory where all agents are interacting together,
games networks allow definition of local interactions which help
to understand the structure of complex systems. Each game which
composes a games network represents a set of localy interacting
agents. The issue of the games network dynamics is defined by
games networks equilibria (Gne) which correspond to steady states.

Different games networks structures — how agents are connec-
ted to games — can provide the same global dynamics. Thus, we
focus on the determination of a normal form games network com-
posed of games as small as possible. The separate algorithm com-
putes a normal form. It is based on the notion of dependence, which
allows the study of interactions occuring in a network. With depen-
dence, highly interacting agents can be determined and gathered in
a same game node.

The normal form game network shows clusters of agents tightly
coupled by interactions. Considering applications in Biology, this
decomposition is useful to show specific interacting components,
and to reveal the association between these components and the
biological function they may support.

8. REFERENCES
[1] R. Alur, T. Henzinger, and O. Kupferman. Alternating-time

temporal logic. In Proceedings of the 38th IEEE Symposium
on Foundations of Computer Science, Florida, October 1997.

[2] C. Chettaoui, F. Delaplace, M. Manceny, and M. Malo.
Games Network & Application to PAs system. In
Information Processing in Cells and Tissues (IPCAT), 2005.

[3] F. Delaplace and M. Manceny. Games network. Technical
Report 101-2004, Laboratoire de Méthodes Informatiques
(LaMI), CNRS-UMR 8042, Université d’Évry-Val
d’Essonne, 2004.

[4] M. Kearns, M. L. Littman, and S. Singh. Graphical models
for game theory. In Proceedings of the 17th Conference on
Uncertaintly in Artificial Intelligence (UAI), pages 253–260,
2001.

[5] D. Koller and B. Milch. Multi-agent influence diagrams for
representing and solving games. In Proceedings of the 17th



International Joint Conference on Artificial Intelligence
(IJCAI), pages 1027–1034, 2001.

[6] D. M. Kreps. A Course in Microeconomic Theory. Princeton
University Press, 1990.

[7] P. La Mura. Game networks. In Proceedings of the 16th
Conference on Uncertaintly in Artificial Intelligence (UAI),
pages 335–342, 2000.

[8] J. Maynard Smith. The games the lizards play. Nature,
380:198–199, 1996.

[9] R. D. McKelvey and A. McLennan. Computation of
equilibria in finite games. In Handbook of Computational
Economics, volume 1, pages 87–142. Elsevier, 1996.
http://econweb.tamu.edu/gambit/.

[10] R. D. McKelvey and A. McLennan. Computation of
equilibria in finite games. In Handbook of Computational
Economics, volume 1, pages 87–142. Elsevier, 1996.
http://econweb.tamu.edu/gambit/.

[11] R. B. Myerson. Game Theory: Analysis of Conflict. Harvard
University Press, 1991.

[12] M. A. Nowak and K. Sigmund. Games on grids. In The
Geometry of Ecological Interactions: Simplifying Spatial
Complexity, pages 134–150, 2000.

[13] M. A. Nowak and K. Sigmund. Evolutionary dynamics of
biological games. Sciences, 303(6):793–799, februar 2004.

[14] M. J. Osborne and A. Rubinstein. A Course in Game Theory,
volume 380. MIT Press, 1994.

[15] C. H. Papadimitriou. Game theory and mathematical
economics: a theoretical computer scientist’s introduction. In
42nd IEEE Symposium on Foundations of Computer
Science: Proceedings, pages 4–8, 2001.

[16] E. Segal, M. Shapira, A. Regev, D. Pe’er, D. Botstein,
D. Koller, and N. Friedman. Module networks: identifying
regulatory modules and their condition-specific regulators
from gene expression data. Nature Genetics, 34:166–176,
June 2003.


