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Abstract

In this paper we present an extension of game theory named games network. The
objective of this extension is to propose a theoretical framework which suits to “mod-
ular dynamics” resulting from different local interactions between agents. Briefly,
games networks describe the situation where each player plays different games at
the same time with several different players. The theoretical extension is based on
strategic games. We more particularly focus on the determination of a global equi-
librium from local Nash equilibria. Especially we determine some conditions on the
existence of a global mixed equilibrium whatever could be the representation of
given interactions by a game network. The results are based on an intermediary
representation called the dependence graph which describes interactions between
players.
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1 Introduction

Game theory [1] provides a modeling framework to study complex interplays
between agents (or players). It was used in a large variety of fields such as
Biology [2,3], Economy [4,5], Computer Science [6,7] to analyse complex in-
teractions. Strategic games describe interactions between agents by associating
a payoff to all possible played configurations for each agent. The design of a
game is based on the assumption that every agents interact with each other.
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Hence, it does not consider the locality of interactions which often occurs in
real systems. The analysis of the locality emphasizes the study of groups of
highly interacting agents. Such groups are called modules and appear to play
a significant rule in the analysis of systems as in biology for instance [8]. An-
alyzing activities of a system in light of modularity appears to be a central
step on the understanding of a system because it emphasizes the organization
of a system from its sub systems.

To tackle with the description of the interaction-based modularity, we pro-
pose an original theoretical framework named games network 3 . The games
network theory extends game theory by considering that agents can be in-
volved in different games at the same time. Consequently, each game to which
an agent participates must be considered to determine its strategy. Informally,
a games network is represented by a bipartite graph where an agent is con-
nected to each game (node) it plays (cf. figure 1). The games networks will
be used to analyze local interacting processes between agents. It aims at de-
termining global steady states of an interaction based system by considering
each local interplays. The definition of games networks enables us to structure
interactions between agents into modules (game nodes).

The computation of an equilibrim in a game relies of the computation of a
Nash equilibrium [9] which is a central result of game theory. In modeling, it is
often assimilated to a steady state ([10]). From local Nash equilibria, one may
define a global equilibrium. Schematically, a Nash equilibrium exists whatever
the game but a global equilibrium related to a specific network may not exist,
because the decision of some agents can be contradictory for two games for
instance. In this paper we propose to define some relationships between the
interactions of agents and the existence of global equilibria.

The paper is organised as follows: Section 2 deals with related work. Section 3
presents notations used in the article. Section 4 briefly recalls the main results
on strategic game theory. Section 5 presents the extension of strategic games to
games networks and deals with the combination of games in a games network.
We define the notion of mixed games network equilibrium which corresponds
to a global equilibrium in a games network. Section 6 interested in the relation
between organization and global equilibria.

2 Related work

Research of the steady states of a game, and so computation of Nash equilib-
ria, is certainly one of the most studied field in game theory. McKelvey and
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McLennan note that the computation of Nash equilibria in n-players games
is much harder, in many important ways, that the computation in 2-players
games.

Recently, some authors were interested in a new way to reduce the complex-
ity of Nash equilibria computation. A game is not considered in its globality,
but through the local interactions between the players of the game. La Mura,
in [11], to treat multi-agent decision problems, introduces a new game repre-
sentation, more strutured and more compact than classical representations in
game theory (normal or extensive form for example). Considering the strategic
separabilities in its representation, La Mura presents convergence methods to
compute Nash equilibria. Interested in Bayesian networks, Koller and Milch in
[12] propose a representation language for general multi-player games named
Multi-Agent Influence Diagrams. They insist on the importance of dependence
relationship among variables to detect structures in games and decrease the
computational cost of finding Nash equilibria. Kearns, Littman and Singh in
[13] introduce a compact graph-theoretic representation for multi-party game
theory. Their main result is an efficient algorithm for computing approximate
Nash equilibria in one-stage games represented by trees or sparse graphs.

In this paper, we focus on interactions localised to a given process. Our games
network representation, compared to La Mura, is not another game-theoritic
representation but an extension of strategic representation. The closest rep-
resentation is that of Kearns, Littman and Singh. However, in quite a some
way as Koller and Milch, we are interested in the influence of the network
organization on the existence of Nash equilibria on the scale of the network.

3 Notations

In the paper, we use the following notations:

• [a : b] = {i ∈ Z|a ≤ i ≤ b} denotes a discrete interval bounded by a and b.
• |A| denotes the cardinal of a set A.
• Let i ∈ A, i also denotes the singleton {i} if it is required by the context of

the operation.
• Let A = [1 : n], given C = {Ci}i∈A, we note:
· CA = ×i∈ACi

· CX = ×i∈XCi,∀X ⊆ A

· C−j = ×i∈A−jCi,∀j ∈ A

• We consider the lifted version Clift = C + {⊥} where the element Bottom
denoted by ⊥ is added to C.

• Concerning the profiles or vectors, we adopt the following notations. Given
A = [1 : n], given a profile c ∈ CA of a set CA = ×i∈ACi, we denote by:
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· c−i = (c1, · · · , ci−1, ci+1, · · · , cn); this excludes the ith component of a pro-
file.

· (c−i, ci) = (c1, · · · , ci−1, ci, ci+1, · · · , cn). The notation distinguishes the
ith component of the profile from the others. This notation is extended to
sets of indices, (c−X , cX), X ⊂ [1 : n].

4 Strategic Games

In this section we give definitions of the game theory used in the article. The
reader may refer to the books [14–16] for a complete overview of the game
theory and its applications.

4.1 Definition of a strategic game

Strategic game is a model of interplays where each agent chooses its plan of
action (or strategy) once and for all, and these choices are made simultane-
ously. Moreover, each agent is rational and perfectly informed of the payoff
function of other agents. Thus, they aim at maximizing their payoffs while
knowing the expectation of other agents.

Definition 4.1 (Normal or Strategic Representation)
A strategic game Γ is a 3−uple 〈A,C, u〉 where:

• A is a set of players or agents.
• C = {Ci}i∈A is a set of strategy sets where each Ci is a set of strategies

available for the agent i, Ci = {c1
i , · · · , cmi

i }.
• u = (ui), i ∈ A is a vector of functions where each ui : C 7→ R, i ∈ A is the

payoff function of the agent i.

In order to conveniently combine sets of strategies, we define the strategy as
follows:

Definition 4.2 (Set of Strategies)
Let 〈A,C, u〉 be a strategic game, let Φ∗ be a set of labels, The set of strategies
C = {Ci}i∈A are defined as follows ∀i ∈ A,Ci = {(i, ϕ)|ϕ ∈ Φ∗}.

By this definition, the fact that agents share the same strategies do not inter-
fere in the union of sets of strategies.
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4.2 Mixed (or Randomized) strategies

Given a strategic game Γ = 〈A,C, u〉, a mixed-strategy 4 for any player i is a
probability distribution over Ci. We let ∆(Ci) denote the set of all possible
mixed strategies for player i.

∆(Ci) = {(pj)j∈[1:mi]|∀j ∈ [1 : mi], 0 ≤ pj ≤ 1 ∧
mi
∑

j=1

pj = 1}

A mixed-strategy profile 5 σ is any vector that specifies one mixed strategy
σi ∈ ∆(Ci) for each agent i ∈ A. We let ∆(C) denotes the set of all possible
mixed-strategy profiles.

∆(C) = ×i∈A∆(Ci)

For any mixed-strategy profile σ ∈ ∆(C), let ui(σ) denotes the payoff for
player i.

ui(σ) =
∑

c∈C

(
∏

j∈A

σj(cj))ui(c),∀i ∈ A

4.3 Nash Equilibrium

Nash equilibrium is the central concept of the game theory. This notion cap-
tures the steady states of the play of a strategic game in which each agent
holds the rational expectation about the other players behavior. A mixed Nash
equilibrium is defined as follows:

Definition 4.3 ((Mixed) Nash Equilibrium of a Strategic Game)
Let 〈A,C, u〉 be a strategic game, a mixed Nash equilibrium 6 is a mixed-
strategy profile σ∗ with the property that :

∀i ∈ A,∀σi ∈ ∆(Ci), ui(σ
∗
−i, σi) ≤ ui(σ

∗
−i, σ

∗
i )

In other words, no agent can unilaterally deviate of a mixed Nash equilibrium
without decreasing its payoff.

4 If the distribution is such that only one probability is different to 0, then the
mixed-strategy is called pure strategy.
5 If the strategy of each player is pure, the profile is said to be pure.
6 If the profile is pure, we speak about pure Nash equilibrium.
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Definition 4.4 (Set of Mixed Nash Equilibria)
Let G = 〈A,C, u〉 be a game, we define mne(G), the set of mixed Nash
equilibria for G:

mne(G) = {σ∗ ∈ ∆(C)|ui(σ
∗
−i, σi) ≤ ui(σ

∗
−i, σ

∗
i ),∀i ∈ A,∀σi ∈ ∆(Ci)}

5 Games Network

A games network corresponds to an extension of the game theory which defines
modular interactions localized to different subsets of agents. Each module
corresponds to a specific game defined by a payoff function. Parameters of the
payoff function are strategies of agents involved in the game. Agents are shared
between different modules and played different games in parallel. However,
they have the same set of strategies for every games they played. In a games
network, several games are combined to form a more general structure of
network. In this section, we address the main definitions of a games network.
The reader may refer to [17] for a more complete overview.

5.1 Definition of a Games Network

The definition of a games network mainly consists of defining a set of agents
connected to a set of games. The normal form of a games network is as follows:

Definition 5.1 (Games Network)
A games network is a 3−uple 〈A, C,U〉 where

• A is a set of agents or players.
• C = {Ci}i∈A is a set of sets of strategies.
• U = {〈A, u〉} is a set of game nodes where each A ⊆ A is a set of agents and

u : A×CA 7→ R is a set of payoff functions such that u = {ui : CA 7→ R}i∈A.

A games network offers a synthetic representation to define the different inter-
plays between several players. The structure 〈A, u〉 totally determines a game
played by a subset of agents since it useless to include the strategies which are
the same for any agent of the network. A games network is represented by a
bipartite graph 〈A,U , E〉, E ⊆ A × U where an edge (i, 〈A, u〉) is a member
of E if and only if i ∈ A (See figure 1 for an illustration).
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5.2 Restriction

A game node can be viewed as a sub game of a larger game played by the
whole agents of the network. To focus on an arbitrary sub game, we equip the
theory with the restriction operator

Definition 5.2 (Mixed-strategy Profile Restriction)
Let A = [1 : n] be a discrete interval representing a set of agents, let C =
{Ci}i∈A be a set of strategy sets. Given a mixed-strategy profile σ ∈ ∆(C) 7 ,
we define its restriction to a subset A ⊆ A, denoted by σ↓A: ∆(C) × 2

A 7→
∆(C)lift, as follows 8 :

(σ↓A)i =











σi if i ∈ A

⊥ otherwise

We extend the restriction operator by removing bottom elements (⊥) of the
profile, but the order of the other values is conserved in the resulting profile.
We note the composition of the removals and restriction operation as follows:
σ ⇓X

Example 5.1 Let A = [1 : 4] and σ = (σ1, σ2, σ3, σ4). Let A = {1, 3}, we
have σ↓A= (σ1,⊥, σ3,⊥) and σ ⇓A= (σ1, σ3).

The restriction is obviously extended to a set of mixed-strategy profiles by
applying the operation to every elements.

The previous definition (5.2) restricts the mixed-strategy profile to relevant
values according to a subset of agents, named its support. A profile of values
defined by a restriction is considered as a local profile of a subset of agents.
Whatever the values associated to other agents are, they will not be considered
for a local profile.

The restriction applied to mixed-strategy profiles will be used in the next
section to put the focus on a sub part of a profile which corresponds to a
games node.

5.3 Mixed Games Network Equilibrium

The definition of a games network allows the combination of several games into
a single network. This puts the emphasis on the way that the network struc-

7 Recall that ∆(C) denote the set of all possible mixed-strategy profiles
8 ⊥ stands for an irrelevant value
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a3

u1,3 .f. .t.

.f. (1, 2) (1, 0)

.t. (1, 0) (0, 1)

a1

u1,2 .f. .t.

.f. (2, 2) (0, 0)

.t. (0, 0) (1, 1)

a2

u2,4 .f. .t.

.f. (1, 0) (0, 4)

.t. (1, 2) (1, 0)

a4

Fig. 1. The games network from section 5.4

ture is determined, because different structures can be proposed to model the
same situation. In order to compare them, it is necessary to identify the equiv-
alence between games networks. The conditions of equivalence investigated in
the paper are based on the equilibria. Informally, two games are equivalent if
their equilibria are the same. Such a condition requires to enlarge the equi-
librium locally computed from game nodes to the whole games network. The
equilibrium at the scale of the network is named the mixed games network
equilibria (MGne).

A games network equilibrium corresponds to a compatible association of local
equilibria. We assume that agents follow the single played strategy rule, that
is an agent plays the same strategy for every connected games. The definition
of MGne can of course be applied to the whole network, but the restriction
to a subset of game nodes allow us to define regions where equilibria are
compatible.

Definition 5.3 (Mixed Games Network Equilibrium)
Let Γ = 〈A, C,U〉 be a games network, let c∗ = (c1, · · · , cn) be a strategy
profile of every agents 9 . c∗ is a mixed games network equilibrium of a subset
U ⊆ U (noted c∗ ∈ MGneΓ(U)) iff:

∀〈A, u〉 ∈ U, c∗ ⇓A is a mixed Nash equilibrium of the game 〈A, (Ci)i∈A, u〉

5.4 An example of games network

Let us consider Γ = 〈A, C,U〉 the games network of figure 1. We have:

• A = {a1, a2, a3, a4}, the agents

9 Recall that by convention |A| = n.
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• Ci = {.f., .t.},∀i ∈ A, the strategies of the agents
• U = {〈A1,3, u

1,3〉, 〈A1,2, u
1,2〉, 〈A2,4, u

2,4〉}, the game nodes where A1,3 =
{a1, a3}, A1,2 = {a1, a2}, A2,4 = {a2, a4} and the payoffs functions are shown
in figure 1.

To compute the MGne of Γ, let us compute the mne of each sub-game.
mne1,3 = mne(〈A1,3, u

1,3〉) =
{(

(1, 0), (1, 0)
)

;
(

(1
3
, 2

3
), (1, 0)

)}

mne1,2 = mne(〈A1,2, u
1,2〉) =

{(

(1, 0), (1, 0)
)

;
(

(0, 1), (0, 1)
)

;
(

(1
3
, 2

3
), (1

3
, 2

3
)
)}

mne2,4 = mne(〈A2,4, u
2,4〉) =

{(

(0, 1), (1, 0)
)

;
(

(1
3
, 2

3
), (1, 0)

)}

Thus, we can compute the MGne of Γ:

MGneΓ =
{(

(
1

3
,
2

3
), (

1

3
,
2

3
), (1, 0), (1, 0)

)}

6 Relations between interactions and MGne

The general existence theorem of Nash ([9]) indicates us that, given any finite
game, there exists at least one mixed Nash equilibrium. On the contrary,
considering any games network, a mixed games network equilibrium may not
exist because the decision of some agents could be contradictory for 2 games.

In the section, we investigate the relationships between interactions and global
equilibria. Interactions correspond to relationships between agents which are
computed from game nodes, they are related to the payoff function. Informally,
we express the interaction as a dependence relation: an agent depends on
another if modification of the strategies of the latter induces a variation of the
payoffs of the former. In real systems, such as biological systems, we are able
to define the interactions. However, there is no one-to-one mapping between
dependence graph and games network. In some extend the games network
can be viewed as a specific organization of interactions. Hence, it appears
interesting to put the emphasis on the relationships between equilibria and
dependence graph, because it helps us to determine whether an equilibrium
specifically depends on a games network or only depends on the structure of
interactions.

6.1 Dependence

To precisely describe the interplays occurring in a game, we define the notion
of dependence between agents. Informally, an agent is dependent on another
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a3 a1 a2 a4

Fig. 2. Dependence graph for the games network from figure 1

if its payoffs are altered by the strategies of the other player.

Definition 6.1 (Agent dependence)
Let 〈A,C, u〉 be a strategic game, let j, i ∈ A2, i 6= j be two agents. j is said
to be dependent on i, denoted by iδuj, if:

∃ci ∈ Ci,∃c′i ∈ Ci,∃c−i ∈ C−i, uj(c−i, ci) 6= uj(c−i, c
′
i)

The dependences provide an overview of the interplays of the agents in a game
without having carefully studying the payoff function. To get an abstraction
of the dependences according to a game, we introduce a new representation
named the agent dependence graph.

Definition 6.2 (Agent Dependence Graph)
Let G = 〈A,C, u〉 be a strategic game, the agent dependence graph DG =
〈A,E〉 is a graph such that: E = {(i, j)|iδuj}

The dependence relation for a game is extended to the dependence relation
by considering a games network as follows:

Definition 6.3 (Dependence relation according to a games network)
Let Γ = 〈A, C,U〉 be a games network, let i ∈ A and j ∈ A be two agents,

iδUj iff ∃G = 〈A, u〉 ∈ U such that iδuj

(Definition of dependence graph is extended in the same way.)

Figure 2 shows the dependence graph for the games network from figure 1.

6.2 Dependence and MGne

We more precisely analyse the interactions between dependence and existence
of mixed games networks equilibria. Obviously, several games networks can
have the same dependence graph, but theorem 6.1 gives a result, considering a
particular dependence graph, and whatever could be the games network having
such a dependence graph. Thus, theorem 6.1 is interested in the dynamics of
the games network and particulary in the lack of self-dependent agent (that
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is, if we consider a games network Γ = 〈A, C,U〉, the lack of agents in {i ∈
A, iδU i}).

Theorem 6.1 (Simple dependence graph)
Let Γ = 〈A, C,U〉 be a games network and DΓ be its dependence graph. If DΓ

is simple, that is if there is no self-loop in DΓ, then Γ has an infinite number
of mixed games network equilibria and

MGneΓ(U) = ∆(C)

Proof. See proof 1 in Annexe.

Lemma 6.1 and theorem 6.2 are interested in non-self-dependent agents (that
is agents in {i ∈ A|i 6 δU i}). Lemma 6.1 allows us to determine that non-
self-dependent agents does not make it possible the decrease of the number of
Nash equilibria. Theorem 6.2 extends this result to games networks and mixed
conditions on structure and on organization to provide a sufficient condition
to existence of a mixed games network equilibrium.

Lemma 6.1 (Non-self-dependent agents)
Let G = 〈A,C, u〉 be a game. Let N ⊆ A the set of non-self-dependent agents,
N = {i ∈ A|i 6 δui}.

∀cN ∈ CN ,∃c−N ∈ C−N , (c−N , cN) ∈ mne(G)

Proof. See proof 2 in Annexe.

Theorem 6.2
Let Γ = 〈A, C,U〉 be a games network. If agents participating to several
games are non-self-dependent, then it exists at least one mixed games network
equilibrium.

Proof. The proof is an immediate consequence of Lemma 6.1.

Conclusion

In this article we propose an extension of the game theory, named theory of the
games networks, which provides a framework to model modular interactions.
Within this framework, we endeavored to define the conditions which make it
possible to establish structural equivalences between games networks, equiva-
lences based on the conservation of global equilibria. We finally interested in
conditions based on the interactions between agents to determine whether or
not a global equilibrium may exist.
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A global equilibrium corresponds to a combination of local equilibria. In other
words, we can construct a games network equilibrium if we compute a local
equilibrium of a game and if we “forward” this equilibrium to the other games
connected to the previous one by a common agent (the “transmission” have
to be respectful of the single played strategy rule).

We put the focus on two kind of agents, self-dependent agents and non-self-
dependent ones. Whereas non-self-dependent agents allows the transmission
of all the strategies, whatever they are, self-dependent agents filter compatible
strategies. That is self-dependent agents only allow global equilibria compat-
ible with the local equilibria of the game the self-dependent agents are con-
nected to. We can approach this situation of the phenomenon of transmission
of the signal in modeling. Thus, we can see self-dependent agents as creators
of a signal and non-self-dependent agent as transmitters. A global equilibrium
exists only if the different signals, created by the self-dependent agents are
compatible between them.

Acknowledgements

The authors would like to thank G. Bernot, F. d’Alché-Buc, F. Tahi, J.-P.
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Annexe

Proof 1 (Theorem 6.1)
By definition we have mneΓ(U) ⊆ ∆(C). To show the other inclusion, let
us consider a strategic game whose dependence graph is simple, and let us
show that any mixed strategy is a Nash equilibrium of this game. Thus, by
composition of Nash equilibria, we can deduce that any mixed strategy of Γ
is a network equilibrium.
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Let G = 〈A,C, u〉 be a strategic game and let DG its dependence graph which
is simple. Because the dependence graph is simple, we have ∀i ∈ A, i 6 δi, that
is

∀i ∈ A,∀ci, c
′
i ∈ Ci,∀c−i ∈ C−i, ui(c−i, ci) = ui(c−i, c

′
i)

Thus, given σ∗ ∈ ∆(C) and i ∈ A, we have

ui(σ
∗) =

∑

c∈C

(

(

∏

j∈A

σ∗
j (cj)

)

.ui(c)
)

=
∑

c
−i∈C

−i

∑

ci∈Ci

(

(

∏

j∈A−i

σ∗
j (cj)

)

.σ∗
i (ci).ui(c−i, ci)

)

=
∑

c
−i∈C

−i

(

(

∏

j∈A−i

σ∗
j (cj)

)

∑

ci∈Ci

(

σ∗
i (ci).ui(c−i, ci)

)

)

(1)

Because ui(c−i, ci) = ui(c−i, c
′
i)∀ci, c

′
i ∈ Ci, and

∑

ci∈Ci
σ∗

i (ci) = 1, we have

ui(σ
∗) =

∑

c
−i∈C

−i

(

(

∏

j∈A−i

σ∗
j (cj)

)

.ui(c)
)

which does not depend on σi. Thus

∀σ∗ ∈ ∆(C),∀i ∈ A,∀σi ∈ ∆(Ci), ui(σ
∗
−i, σi) ≤ ui(σ

∗
−i, σ

∗
i )

That is σ∗ is a Nash equilibrium for G. �

Proof 2 (Lemma 6.1)
Let c∗N ∈ CN be a strategic profile for the non-self-dependent agents. We are
going to construct c∗ ∈ C such that c∗ ∈ mne(G). Let us consider the game
G−N = 〈A−N , C−N , u−N〉 with

• A−N = A \ N ,
• C−N = ×i∈A\NCi,
• u−N : C−N 7→ R, u−N(c−N) = u(c−N , c∗N).

We know it exists at least one nash equilibrium for game G1. Let c∗−N ∈
mne(G−N) such an equilibrium and let c∗ = (c∗−N , c∗N). Then,

∀i ∈ N,∀ci ∈ Ci, u(c∗−i, ci) = u(c∗−i, c
∗
i ) because i 6 δi

and

∀i ∈ A \ N,∀ci ∈ Ci, u(c∗−i, ci) = u−N(c∗−N−i, ci) ≤ u−N(c∗−N−i, c
∗
i ) = u(c∗−i, c

∗
i )

That is ∀i ∈ A,∀ci ∈ Ci, u(c∗−i, ci) ≤ u(c∗−i, c
∗
i ) and c∗ ∈ mne(G) �
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